Quantum measurement noise for observation of a~particle in a~magnetic field
Teoretičeskaâ i matematičeskaâ fizika, Tome 66 (1986) no. 3, pp. 422-429

Voir la notice de l'article provenant de la source Math-Net.Ru

The quantum theory of continuous measurements based on Feynman integration “in finite limits” is used in the problem of following the coordinates of a particle moving in a magnetic field. The probability of a particular result of the following for known external force is found, and, conversely, the accuracy with which the external force can be recovered from the known result of measurement is estimated. Allowance is made not only for the spread of the results due to instrumental error but also for the quantum-mechanical influence of the measuring process on the motion of the particle. Three characteristic regimes of measurement are identified: classical, quantum, optimal.
@article{TMF_1986_66_3_a8,
     author = {G. A. Golubtsova},
     title = {Quantum measurement noise for observation of a~particle in a~magnetic field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {422--429},
     publisher = {mathdoc},
     volume = {66},
     number = {3},
     year = {1986},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_66_3_a8/}
}
TY  - JOUR
AU  - G. A. Golubtsova
TI  - Quantum measurement noise for observation of a~particle in a~magnetic field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 422
EP  - 429
VL  - 66
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_66_3_a8/
LA  - ru
ID  - TMF_1986_66_3_a8
ER  - 
%0 Journal Article
%A G. A. Golubtsova
%T Quantum measurement noise for observation of a~particle in a~magnetic field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 422-429
%V 66
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1986_66_3_a8/
%G ru
%F TMF_1986_66_3_a8
G. A. Golubtsova. Quantum measurement noise for observation of a~particle in a~magnetic field. Teoretičeskaâ i matematičeskaâ fizika, Tome 66 (1986) no. 3, pp. 422-429. http://geodesic.mathdoc.fr/item/TMF_1986_66_3_a8/