Relaxation processes in multiatomic gases. II
Teoretičeskaâ i matematičeskaâ fizika, Tome 66 (1986) no. 3, pp. 445-454
Cet article a éte moissonné depuis la source Math-Net.Ru
The kinetic equation for an optically inactive component of a mixture of gases is solved in the dissipative approximation. The transport coefficients, the relaxation pressure, and the sources in the equations of the kinetics and relaxation gas dynamics are determined. A diatomie gas with weak excitation of the vibrational states of the molecules is considered, and the relaxation pressure and the relaxation times are determined in the two-moment approximation. The kinetic equations and the equation of radiative transfer are determined in the nondissipative approximation for vibrational-rotational relaxation.
@article{TMF_1986_66_3_a10,
author = {L. A. Pal'tsev},
title = {Relaxation processes in multiatomic {gases.~II}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {445--454},
year = {1986},
volume = {66},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1986_66_3_a10/}
}
L. A. Pal'tsev. Relaxation processes in multiatomic gases. II. Teoretičeskaâ i matematičeskaâ fizika, Tome 66 (1986) no. 3, pp. 445-454. http://geodesic.mathdoc.fr/item/TMF_1986_66_3_a10/
[1] Paltsev L. A., TMF, 66:2 (1986), 302–313 | MR
[2] Bogolyubov N. N., Izbr. tr. v trekh tomakh, t. 2, Naukova dumka, Kiev, 1970 | MR
[3] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki. I. Funktsionalnyi analiz, Mir, M., 1977 | MR
[4] Fertsiger Dzh., Kaper G., Matematicheskaya teoriya protsessov perenosa v gazakh, Mir, M., 1976 | MR
[5] Moraal H., Phys. Rep., 17C:5 (1975), 225–306 | DOI
[6] Paltsev L. A., TMF, 50:3 (1982), 426–437 | MR
[7] Paltsev L. A., TMF, 51:1 (1982), 119–129 | MR
[8] Tip A., Physica, 52:2 (1971), 493–522 | DOI | MR
[9] Paltsev L. A., PMTF, 1972, no. 4, 8–17
[10] Kuznetsov V. M., Izv. AN SSSR, MZhG, 1967, no. 6, 89–94