Method of special embeddings for grand unification models
Teoretičeskaâ i matematičeskaâ fizika, Tome 66 (1986) no. 3, pp. 350-359 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method of constructing embeddings into compact classical Lie algebras is proposed. An algorithm for the decomposition of representations is given. Criteria for maximality of embeddings are formulated. The method is particularly effective for analyzing symmetry breaking schemes in grand unified models.
@article{TMF_1986_66_3_a1,
     author = {D. V. Vassilevich and V. D. Lyakhovsky},
     title = {Method of special embeddings for grand unification models},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {350--359},
     year = {1986},
     volume = {66},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_66_3_a1/}
}
TY  - JOUR
AU  - D. V. Vassilevich
AU  - V. D. Lyakhovsky
TI  - Method of special embeddings for grand unification models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 350
EP  - 359
VL  - 66
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_66_3_a1/
LA  - ru
ID  - TMF_1986_66_3_a1
ER  - 
%0 Journal Article
%A D. V. Vassilevich
%A V. D. Lyakhovsky
%T Method of special embeddings for grand unification models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 350-359
%V 66
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1986_66_3_a1/
%G ru
%F TMF_1986_66_3_a1
D. V. Vassilevich; V. D. Lyakhovsky. Method of special embeddings for grand unification models. Teoretičeskaâ i matematičeskaâ fizika, Tome 66 (1986) no. 3, pp. 350-359. http://geodesic.mathdoc.fr/item/TMF_1986_66_3_a1/

[1] Slansky R., Phys. Rep., 79:1 (1981), 1–128 | DOI | MR

[2] Salam A., Strathdee J., On Kaluza - Klein theory, Preprint IC/81/211, ICTP, Trieste, 1981 | MR

[3] Goto M., Grosskhans F., Poluprostye algebry Li, Mir, M., 1981 | MR | Zbl

[4] Dynkin E. B., DAN SSSR, 81:6 (1951), 987–990 | MR | Zbl

[5] Dynkin E. B., Tr. Mosk. matem. ob va, 1, 1952, 39–166 | MR | Zbl

[6] Feldman G., Fulton T., Matthews P. T., The subgroup structure of grand unified theories, with application to the fermion mass matrix of $O(10)$, Preprint JHU-HET 8101, JHU, Baltimore, 1981

[7] Feldman G., Fulton T., Matthews P. T., The sub-algebras of Lie algebras, Preprint JHU-HET 8209, JHU, Baltimore, 1982 | MR

[8] Dynkin E. B., Onischik A. L., UMN, 10:4 (1955), 3–74 | MR | Zbl

[9] Burbaki N., Gruppy i algebry Li, glavy IIV, VIII, Mir, M., 1978 | MR

[10] Lyakhovskii V. D., Bolokhov A. A., Gruppy simmetrii i elementarnye chastitsy, LGU, L., 1983 | MR

[11] Burbaki N., Gruppy i algebry Li, glavy IV, V, VI, Mir, M., 1972 | MR | Zbl

[12] Beg M. A. B., Sirlin A., Phys. Rep., 88:1 (1982), 1–90 | DOI

[13] Georgi H., Nucl. Phys. B, 156:1 (1979), 126–134 | DOI | MR

[14] Kang K., Ouvry S., Automatic $U(1)$ symmetry and invisible axion models without domain walls, Preprint BROWN-HET-497, Brown University, Providence, 1983