Non-Markov theory of sudden modulation
Teoretičeskaâ i matematičeskaâ fizika, Tome 66 (1986) no. 2, pp. 253-263 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Kinetic equations are obtained for the averaged evolution operator of a quantum system whose Hamiltonian depends on a parameter that varies randomly in the time. It is assumed that the fluctuations of the parameter occur instantaneously, i.e., during the time of a “jump” that is appreciably shorter than the mean interval between jumps, when the parameter keeps a constant value. For an arbitrary distribution with respect to the times between jumps, the “noise” effect that modulates parametrically the system is not a Markov process. Nevertheless, one can find for the response of the system closed integrodifferential equations that contain as a special case the well-known results of the theory of sudden modulation for a homogeneous (Poisson) sequence of jumps in time. As an application, the reasons for oscillating behavior of the correlation functions of the dynamical variables in a dense medium are investigated.
@article{TMF_1986_66_2_a9,
     author = {A. I. Burshtein and A. A. Zharikov and S. I. Temkin},
     title = {Non-Markov theory of sudden modulation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {253--263},
     year = {1986},
     volume = {66},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_66_2_a9/}
}
TY  - JOUR
AU  - A. I. Burshtein
AU  - A. A. Zharikov
AU  - S. I. Temkin
TI  - Non-Markov theory of sudden modulation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 253
EP  - 263
VL  - 66
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_66_2_a9/
LA  - ru
ID  - TMF_1986_66_2_a9
ER  - 
%0 Journal Article
%A A. I. Burshtein
%A A. A. Zharikov
%A S. I. Temkin
%T Non-Markov theory of sudden modulation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 253-263
%V 66
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1986_66_2_a9/
%G ru
%F TMF_1986_66_2_a9
A. I. Burshtein; A. A. Zharikov; S. I. Temkin. Non-Markov theory of sudden modulation. Teoretičeskaâ i matematičeskaâ fizika, Tome 66 (1986) no. 2, pp. 253-263. http://geodesic.mathdoc.fr/item/TMF_1986_66_2_a9/

[1] Kubo R., J. Math. Phys., 4:2 (1963), 174 | DOI | MR | Zbl

[2] Blume M., Phys. Rev., 174 (1968), 351 ; Johnson Jr. C. S., J. Chem. Phys., 41 (1964), 3277 | DOI | DOI

[3] Burshtein A. I., ZhETF, 48 (1965), 850; 49, 1362

[4] Korst N. N., TMF, 6:2 (1971), 265–278

[5] Doktorov A. B., Physica, 90A (1978), 109 | DOI | MR

[6] Oseledchik Yu. S., Burshtein A. I., Izv. VUZov, radiofizika, 26 (1983), 698

[7] Korst N. N., Antsifirova L. I., UFN, 126 (1978), 67 | DOI

[8] Burshtein A. I., Temkin S. I., Spektroskopiya molekulyarnogo vrascheniya v gazakh i zhidkostyakh, Nauka (Sib. otd-nie), Novosibirsk, 1982

[9] Feller V., Vvedenie v teoriyu veroyatnostei i ee primeneniya, t. 2 (per. s angl.), Mir, M., 1967 | MR

[10] Montroll E. W., Weiss C. H., J. Math. Phys., 6 (1965), 167 | DOI | MR | Zbl

[11] Zharikov A. A., Temkin S. I., Burshtein A. I., Chem. Phys., 1985 | Zbl

[12] Sher H., Lax M., Phys. Rev., B7 (1973), 4491 | DOI

[13] Szasz Gy. I., Heinzinger K., J. Chem. Phys., 79 (1983), 3467 | DOI

[14] Purcell E. M., Phys. Rev., 117 (1960), 828 | DOI

[15] Chandler D., J. Chem. Phys., 60 (1974), 3504

[16] Revokatov O. P., Brilliantov N. V., Vestn. MGU, ser. 3, fizika, astronomiya, 1983, no. 24, 76