Stochastic quantization in field theory with a fundamental mass
Teoretičeskaâ i matematičeskaâ fizika, Tome 66 (1986) no. 2, pp. 188-196 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Stochastic quantization of fermions is developed in the framework of quantum field theory with non-Euclidean momentum space. Analogs of the Langevin and Fokker–Planck equations taking into account the new geometrical properties of the momentum space are obtained by using Grassmann variables to describe the non-Euclidean Fermi fields. It is shown that the stochastic method and the second-quantization method are equivalent in path-integral terms.
@article{TMF_1986_66_2_a2,
     author = {G. G. Petriashvili},
     title = {Stochastic quantization in field theory with a~fundamental mass},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {188--196},
     year = {1986},
     volume = {66},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_66_2_a2/}
}
TY  - JOUR
AU  - G. G. Petriashvili
TI  - Stochastic quantization in field theory with a fundamental mass
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 188
EP  - 196
VL  - 66
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_66_2_a2/
LA  - ru
ID  - TMF_1986_66_2_a2
ER  - 
%0 Journal Article
%A G. G. Petriashvili
%T Stochastic quantization in field theory with a fundamental mass
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 188-196
%V 66
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1986_66_2_a2/
%G ru
%F TMF_1986_66_2_a2
G. G. Petriashvili. Stochastic quantization in field theory with a fundamental mass. Teoretičeskaâ i matematičeskaâ fizika, Tome 66 (1986) no. 2, pp. 188-196. http://geodesic.mathdoc.fr/item/TMF_1986_66_2_a2/

[1] Kadyshevsky V. G., Nucl. Phys., B141 (1978), 577–596 | MR

[2] Kadyshevsky V. G., Mateev M. D., Phys. Lett., B106 (1981), 139–142 | DOI

[3] Kadyshevskii V. G., Mateev M. D., Kvantovaya teoriya polya i novyi universalnyi masshtab v oblasti vysokikh energii. Skalyarnaya model, Preprint R2-83-844, OIYaI, Dubna, 1983

[4] Donkov A. D., Ibadov R. M., Kadyshevskii V. G., Mateev M. D., Chizhov M. V., Kvantovaya teoriya polya i novyi universalnyi masshtab v oblasti vysokikh energii. Kalibrovochnye vektornye polya, Preprint R2-84-109, OIYaI, Dubna, 1984

[5] Donkov A. D., Ibadov R. M., Kadyshevskii V. G., Mateev M. D., Chizhov M. V., Kvantovaya teoriya polya i novyi universalnyi masshtab v oblasti vysokikh energii. Polya Diraka, Preprint R2-84-265, OIYaI, Dubna, 1984

[6] Parisi G., Wu Y.-S., Scientia Sinica, B24 (1981), 483–492 | MR

[7] Florates E., Iliopolos J., Nucl. Phys., B214 (1983), 392–404 | DOI

[8] Zwanzinger D., Nucl. Phys., B192 (1981), 259–269 | DOI

[9] Parisi G., Sourlas N., Nucl. Phys., B206 (1982), 321–332 | DOI | MR | Zbl

[10] Fukai T., Nakazamo H., Ohba I., Okano K., Yamanaka Y., Prog. Theor. Phys., B69:5 (1983), 1600–1616 | DOI | MR | Zbl

[11] Damgaard P., Trokos K., Stochastic quantization with fermions, Maryland University preprint, 1983 | MR

[12] Breit J., Gupta S., Zaks A., Cold base stars, Princeton preprint, 1983

[13] Schwinger J., Phys. Rev., B115:3 (1959), 721–731 | DOI | MR | Zbl

[14] Gikhman I. I., Skorokhod A. V., Stokhasticheskie differentsialnye uravneniya, Naukova dumka, Kiev, 1968 | MR | Zbl