Asymptotic properties of the solutions of a multicomponent linear conjugation problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 66 (1986) no. 2, pp. 326-330
Cet article a éte moissonné depuis la source Math-Net.Ru
A study is made of the behavior at infinity of the solutions of a multicomponent linear conjugation problem constructed in the form of series of piecewise holomorphlc functions in the case when the indices of the diagonal elements of the coefficient of the problem are positive.
@article{TMF_1986_66_2_a15,
author = {O. V. Meunargiya},
title = {Asymptotic properties of the solutions of a~multicomponent linear conjugation problem},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {326--330},
year = {1986},
volume = {66},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1986_66_2_a15/}
}
TY - JOUR AU - O. V. Meunargiya TI - Asymptotic properties of the solutions of a multicomponent linear conjugation problem JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1986 SP - 326 EP - 330 VL - 66 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1986_66_2_a15/ LA - ru ID - TMF_1986_66_2_a15 ER -
O. V. Meunargiya. Asymptotic properties of the solutions of a multicomponent linear conjugation problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 66 (1986) no. 2, pp. 326-330. http://geodesic.mathdoc.fr/item/TMF_1986_66_2_a15/
[1] Meunargiya O. V., TMF, 37:3 (1978), 423–426 | MR | Zbl
[2] Volovich I. V., TMF, 57:3 (1983), 469–473 | MR
[3] Vekua N. P., Sistemy singulyarnykh integralnykh uravnenii, Nauka, M., 1970 | MR | Zbl
[4] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR
[5] Aleksandrov A. B., Funkts. analiz i ego prilozh., 9:2 (1975), 1–4 | MR | Zbl