Scale-invariant description of the critical region in the method of integral equations for the correlation functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 66 (1986) no. 2, pp. 264-277 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that in the framework of the Percus–Lebowitz method of functional expansions it is not possible to obtain an equation closed at the level of the two-particle correlation functions ensuring a realistic description of a large neighborhood of the critical point. A modified variant of the method is used to derive an approximate equation for the twoparticle correlation functions valid both at the critical point and far from it. The $\varepsilon$ expansions of the critical exponents that follow from this equation agree with the wellknown results for the Ising model.
@article{TMF_1986_66_2_a10,
     author = {A. L. Blokhin and A. V. Chalyi},
     title = {Scale-invariant description of the critical region in the method of integral equations for the correlation functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {264--277},
     year = {1986},
     volume = {66},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_66_2_a10/}
}
TY  - JOUR
AU  - A. L. Blokhin
AU  - A. V. Chalyi
TI  - Scale-invariant description of the critical region in the method of integral equations for the correlation functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 264
EP  - 277
VL  - 66
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_66_2_a10/
LA  - ru
ID  - TMF_1986_66_2_a10
ER  - 
%0 Journal Article
%A A. L. Blokhin
%A A. V. Chalyi
%T Scale-invariant description of the critical region in the method of integral equations for the correlation functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 264-277
%V 66
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1986_66_2_a10/
%G ru
%F TMF_1986_66_2_a10
A. L. Blokhin; A. V. Chalyi. Scale-invariant description of the critical region in the method of integral equations for the correlation functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 66 (1986) no. 2, pp. 264-277. http://geodesic.mathdoc.fr/item/TMF_1986_66_2_a10/

[1] Bogolyubov N. N., Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M.–L., 1946 | MR

[2] Balesku R., Ravnovesnaya i neravnovesnaya statisticheskaya mekhanika, t. I, Mir, M., 1978 | MR

[3] Kovalenko N. P., Fisher I. Z., UFN, 108:12 (1972), 210–239

[4] Patashinskii A. Z., Pokrovskii V. L., Fluktuatsionnaya teoriya fazovykh perekhodov, Nauka, M., 1982 | MR

[5] Ma Sh., Sovremennaya teoriya kriticheskikh yavlenii, Mir, M., 1980

[6] Percus J. K., “The equilibrium pair distribution in classical statistical mechanics”, The equilibrium theory of classical fluids, eds. Frisch H. L., Lebowitz J. L., W. A. Benjamin, N.Y., 1964

[7] Rashbruk Dzh., “Ravnovesnye teorii zhidkogo sostoyaniya”, Fizika prostykh zhidkostei. T. I. Statisticheskaya teoriya, Mir, M., 1971, 30–62

[8] Sysoev V. M., Chalyi A. V., TMF, 44:2 (1980), 251–262 | MR

[9] Fishman Sh., Fisher M. E., Physica, A108 (1981), 1–13 | DOI | MR

[10] Sysoev V. M., Chalyi A. V., Izv. VUZov, fizika, 1981, no. 12, 43–47

[11] Sysoev V. M., Chalyi A. V., Fizika zhidkogo sostoyaniya, 1979, 92–96

[12] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Spetsialnye funktsii, Nauka, M., 1983 | MR | Zbl