Description of limit gibbs states for Curie–Weiss–Ising model
Teoretičeskaâ i matematičeskaâ fizika, Tome 66 (1986) no. 1, pp. 109-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Bogolyubov's method of quasiaverages is used to describe the limit equilibrium states of the ferromagnetic Curie–Weiss–Ising model in zero magnetic field. It is shown that they are translatioaally invariant and are linear convex combinations of two extreme points (pure phases).
@article{TMF_1986_66_1_a8,
     author = {I. G. Brankov and V. A. Zagrebnov and N. S. Tonchev},
     title = {Description of limit gibbs states for {Curie{\textendash}Weiss{\textendash}Ising} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {109--120},
     year = {1986},
     volume = {66},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_66_1_a8/}
}
TY  - JOUR
AU  - I. G. Brankov
AU  - V. A. Zagrebnov
AU  - N. S. Tonchev
TI  - Description of limit gibbs states for Curie–Weiss–Ising model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 109
EP  - 120
VL  - 66
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_66_1_a8/
LA  - ru
ID  - TMF_1986_66_1_a8
ER  - 
%0 Journal Article
%A I. G. Brankov
%A V. A. Zagrebnov
%A N. S. Tonchev
%T Description of limit gibbs states for Curie–Weiss–Ising model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 109-120
%V 66
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1986_66_1_a8/
%G ru
%F TMF_1986_66_1_a8
I. G. Brankov; V. A. Zagrebnov; N. S. Tonchev. Description of limit gibbs states for Curie–Weiss–Ising model. Teoretičeskaâ i matematičeskaâ fizika, Tome 66 (1986) no. 1, pp. 109-120. http://geodesic.mathdoc.fr/item/TMF_1986_66_1_a8/

[1] Minlos R. A., Funkts. analiz i ego prilozh., 1:2 (1967), 60–73 | MR | Zbl

[2] Minlos R. A., Funkts. analiz i ego prilozh., 1:3 (1967), 40–53 | MR | Zbl

[3] Dobrushin R. L., Teoriya veroyatn. i ee primen., 13:2 (1968), 201–229 | MR

[4] Dobrushin R. L., Teoriya veroyatn. i ee primen., 15:3 (1970), 469–497 | Zbl

[5] Lanford O. E., Ruelle D., Commun. Math. Phys., 13:3 (1968), 194–215 | DOI | MR

[6] Ruelle D., Commun. Math. Phys., 18:2 (1970), 127–159 | DOI | MR | Zbl

[7] Bogolyubov N. N., Khatset B. I., DAN SSSR, 66:3 (1949), 321–324 | MR | Zbl

[8] Bogolyubov N. N., Petrina D. Ya., Khatset B. I., TMF, 1:2 (1969), 251–274 | MR

[9] Zagrebnov V. A., TMF, 51:3 (1982), 389–402 | MR

[10] Dobrushin R. L., Funkts. analiz i ego prilozh., 2:4 (1968), 44–57 | MR | Zbl

[11] Simon B., Commun. Math. Phys., 68:2 (1979), 183–185 | DOI | MR | Zbl

[12] Klein D., Commun. Math. Phys., 86:2 (1982), 227–246 | DOI | MR | Zbl

[13] Aizenman M., Commun. Math. Phys., 73:1 (1980), 83–94 | DOI | MR

[14] Higychi Y., Random Fields, Colloquia Mathematica Sociatatis Janos Bolyai, 27, no. 1, 1981, 517–534

[15] Bogolyubov N. N., Izbr. tr. v trekh tomakh, t. 3, Naukova dumka, Kiev, 1971, 174–243. | MR

[16] Ellis R. S., Newman Ch. M., J. Stat. Phys., 19:2 (1978), 149–161 | DOI | MR

[17] Bogolyubov N. N. (ml.), Brankov I. G., Zagrebnov V. A., Kurbatov A. M., Tonchev N. S., Metod approksimiruyuschego gamiltoniana v statisticheskoi fizike, Izd-vo BAN, Sofiya, 1981, gl. III, § 1.

[18] Shiryaev A. N., Veroyatnost, Nauka, M., 1980 | MR | Zbl

[19] Wagner H., Z. Physik, 195:3 (1966), 273–299 | DOI

[20] Bogolyubov N. N. (ml.), Metod issledovaniya modelnykh gamiltonianov, Nauka, M., 1974 | MR

[21] Grib A. A., Damaskinskii E. V., Maksimov V. M., UFN, 102:4 (1970), 587–620 | DOI

[22] Bogolubov N. N. (Jr.), J. Math. Phys., 14:1 (1973), 79–83 | DOI | MR

[23] Ruelle D., Thermodynamic Formalism, Addison-Wesley, Reading, Mass., 1978 | MR | Zbl

[24] Malyshev V. A., Elementarnoe vvedenie v matematicheskuyu fiziku beskonechnochastichnykh sistem, Preprint R17-83-363, OIYaI, Dubna, 1982 | MR

[25] Yukalov V. I., Physica A, 108:283 (1981), 402–416 | DOI

[26] Fedoryuk M. V., Metod perevala, Nauka, M., 1977, gl. II, § 2. | MR