Discrete vacuum superselection rule in Wightman theory with essentially self-adjoint field operators
Teoretičeskaâ i matematičeskaâ fizika, Tome 66 (1986) no. 1, pp. 13-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main results of earlier work by the author, Sushko, and Khoruzhii [4,5] describing the algebraic structure of quantum-field systems with (discrete) vacuum superselection rules are generalized to the large class of Wightman theories with essentially selfadjoint field operators (in [4,5], a very strong restriction was imposed on the theory, namely, that the polynomial $\operatorname{Op}^*$ algebra of the Wightman fields $\mathscr P$ belongs to the class II, i.e., $\mathscr P'_{\mathrm s}=\mathscr P'_{\mathrm w}$). It is also shown that the field $\operatorname{Op}^*$ algebra of a Wightman theory with discrete vacuum superselection rule possesses a class II extension.
@article{TMF_1986_66_1_a1,
     author = {A. V. Voronin},
     title = {Discrete vacuum superselection rule in {Wightman} theory with essentially self-adjoint field operators},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {13--29},
     year = {1986},
     volume = {66},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_66_1_a1/}
}
TY  - JOUR
AU  - A. V. Voronin
TI  - Discrete vacuum superselection rule in Wightman theory with essentially self-adjoint field operators
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 13
EP  - 29
VL  - 66
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_66_1_a1/
LA  - ru
ID  - TMF_1986_66_1_a1
ER  - 
%0 Journal Article
%A A. V. Voronin
%T Discrete vacuum superselection rule in Wightman theory with essentially self-adjoint field operators
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 13-29
%V 66
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1986_66_1_a1/
%G ru
%F TMF_1986_66_1_a1
A. V. Voronin. Discrete vacuum superselection rule in Wightman theory with essentially self-adjoint field operators. Teoretičeskaâ i matematičeskaâ fizika, Tome 66 (1986) no. 1, pp. 13-29. http://geodesic.mathdoc.fr/item/TMF_1986_66_1_a1/

[1] Glimm J., Jaffe A., Spencer T., Commun. Math. Phys., 45:3 (1975), 203–216 | DOI | MR | Zbl

[2] Fröhlich J., Commun. Math. Phys., 47:3 (1976), 269–310 | DOI | MR

[3] Fröhlich J., Quantum theory of nonlinear wave equations, Lect. Notes Phys., 73, Springer-Verlag, Berlin, 1978 | Zbl

[4] Voronin A. V., Sushko V. N., Khoruzhii S. S., TMF, 59:1 (1984), 28–48 | MR | Zbl

[5] Voronin A. V., Sushko V. N., Khoruzhii S. S., TMF, 60:3 (1984), 323–343 | MR | Zbl

[6] Sushko V. N., Khoruzhii S. S., TMF, 4:2 (1970), 171–195 | MR

[7] Sushko V. N., Khoruzhii S. S., TMF, 4:3 (1970), 341–359 | MR

[8] Borchers H. J., Nuovo Cim., 24:2 (1962), 214–236 | DOI | MR | Zbl

[9] Powers R. T., Commun. Math. Phys., 21 (1971), 85–124 | DOI | MR | Zbl

[10] Lassner G., Timmermann W., Rep. Math. Phys., 3:4 (1972), 295–305 | DOI | MR | Zbl

[11] Diksme Zh., $C^*$-algebry i ikh predstavleniya, Nauka, M., 1974 | MR

[12] Barut A., Ronchka R., Teoriya predstavlenii grupp i ee prilozheniya, t. 1, Mir, M., 1980 | MR | Zbl