Inequality of the passive gravitational mass and the inertial mass of an extended body
Teoretičeskaâ i matematičeskaâ fizika, Tome 66 (1986) no. 1, pp. 3-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the framework of the problem of two extended bodies, a new definition of the passive gravitational mass of an extended spherically symmetric body (the Earth) is given. If this mass is equal to the inertial mass, the equation of motion of the center of mass of the extended body becomes the equation of a geodesic of a point in the total gravitational field of the two extended bodies (the Earth and the Sun). It is shown that in general the passive gravitational mass is not equal to the inertial mass, and therefore the center of mass does not move along a geodesic.
@article{TMF_1986_66_1_a0,
     author = {V. I. Denisov and A. A. Logunov and Yu. V. Chugreev},
     title = {Inequality of the passive gravitational mass and the inertial mass of an~extended body},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--12},
     year = {1986},
     volume = {66},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1986_66_1_a0/}
}
TY  - JOUR
AU  - V. I. Denisov
AU  - A. A. Logunov
AU  - Yu. V. Chugreev
TI  - Inequality of the passive gravitational mass and the inertial mass of an extended body
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1986
SP  - 3
EP  - 12
VL  - 66
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1986_66_1_a0/
LA  - ru
ID  - TMF_1986_66_1_a0
ER  - 
%0 Journal Article
%A V. I. Denisov
%A A. A. Logunov
%A Yu. V. Chugreev
%T Inequality of the passive gravitational mass and the inertial mass of an extended body
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1986
%P 3-12
%V 66
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1986_66_1_a0/
%G ru
%F TMF_1986_66_1_a0
V. I. Denisov; A. A. Logunov; Yu. V. Chugreev. Inequality of the passive gravitational mass and the inertial mass of an extended body. Teoretičeskaâ i matematičeskaâ fizika, Tome 66 (1986) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/TMF_1986_66_1_a0/

[1] Dicke R. H., Proc. Intern. School Phys. “Enrico Fermi”, Course XX, N. Y., 1962, 16–19; 26–27

[2] Nordtvedt K., Jr., Phys. Rev., 169 (1968), 1014–1017 | DOI

[3] Will C. M., Astrophys. J., 163 (1971), 611–628 | DOI | MR

[4] Dicke R. H., Gravitation and Universe, American Philosophical Society, Philadelphia, 1969, 19–24

[5] Nordtvedt K., Jr., Phys. Rev., D7 (1973), 2347–2356

[6] William J. G. et al., Phys. Rev. Lett., 36 (1976), 551–554 | DOI

[7] Shapiro I. I., Counselman C. C., King R. W., Phys. Rev. Lett., 36:11 (1976), 555–558 | DOI

[8] Mizner Ch., Torn K., Uiler Dzh., Gravitatsiya, t. 3, Mir, M., 1977 | MR

[9] Will C. M., Theory and experiment in gravitational physics, Cambridge Univ. Press, N. Y., 1981 | MR

[10] Denisov V. I., Logunov A. A., Mestvirishvili M. A., Chugreev Yu. V., Tr. MIAN SSSR, 167, 1985, 108–155 | Zbl

[11] Denisov V. I., Logunov A. A., Mestvirishvili M. A., TMF, 47:1 (1981), 3–37 | MR | Zbl

[12] Denisov V. I., Logunov A. A., EChAYa, 13:4 (1982), 757–934 | MR

[13] Denisov V. I., Logunov A. A., “Novye predstavleniya o geometrii prostranstva-vremeni i gravitatsii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 21, VINITI AN SSSR, M., 1982, 1–220 | MR | Zbl

[14] Chugreev Yu. V., Negeodezichnost dvizheniya tsentra mass Zemli i prilivnye effekty, Preprint IFVE 85-80, IFVE, Serpukhov, 1985

[15] Logunov A. A., Mestvirishvili M. A., TMF, 61:3 (1984), 327–346 | MR | Zbl

[16] Warburton R. J., Goodkind J. M., Astrophys. J., 208 (1976), 881–886 | DOI