Perturbation theory in the polaron model at finite temperature
Teoretičeskaâ i matematičeskaâ fizika, Tome 65 (1985) no. 3, pp. 423-434 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A perturbation theory scheme is constructed for the partition function (and free energy) in the polaron model. The correction of arbitrary order is expressed in terms of multiple integrals which depend parametrically on the temperature. The first two orders are analyzed in detail. In the higher orders, the four-point correlation function, for which an explicit expression is obtained plays a central role. The properties of this correlation function are studied. The analogies with the perturbation theory scheme for the $S$ matrix in quantum field theory are discussed.
@article{TMF_1985_65_3_a9,
     author = {N. N. Bogolyubov (Jr.) and V. N. Plechko},
     title = {Perturbation theory in the polaron model at finite temperature},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {423--434},
     year = {1985},
     volume = {65},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_65_3_a9/}
}
TY  - JOUR
AU  - N. N. Bogolyubov (Jr.)
AU  - V. N. Plechko
TI  - Perturbation theory in the polaron model at finite temperature
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 423
EP  - 434
VL  - 65
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_65_3_a9/
LA  - ru
ID  - TMF_1985_65_3_a9
ER  - 
%0 Journal Article
%A N. N. Bogolyubov (Jr.)
%A V. N. Plechko
%T Perturbation theory in the polaron model at finite temperature
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 423-434
%V 65
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1985_65_3_a9/
%G ru
%F TMF_1985_65_3_a9
N. N. Bogolyubov (Jr.); V. N. Plechko. Perturbation theory in the polaron model at finite temperature. Teoretičeskaâ i matematičeskaâ fizika, Tome 65 (1985) no. 3, pp. 423-434. http://geodesic.mathdoc.fr/item/TMF_1985_65_3_a9/

[1] Bogolyubov N. N., Bogolyubov N. N. (ml.), Aspekty teorii polyarona, Soobscheniya OIYaI, R17-81-65, OIYaI, Dubna, 1981

[2] Bogolyubov N. N., Bogolyubov N. N. (ml.), EChAYa, 11:2 (1980), 246–300 | MR

[3] Pekar S. I., Issledovaniya po elektronnoi teorii kristallov, Gostekhizdat, M.–L., 1951

[4] Fröhlich H., Pelzer E., Zinau S., Phil. Mag., ser. 7, 41:314 (1950), 221–242 | DOI | Zbl

[5] Fröhlich H., Adv. Phys., 3:11 (1954), 325–361 | DOI | Zbl

[6] Schultz T. D., Phys. Rev., 116:3 (1959), 526–543 | DOI | Zbl

[7] Appel J., Solid State Physics, vol. 21, eds. H. Ehrenreich, F. Seitz, D. Turnbull, Academic, N.-Y., 1968, 193 ; Yu. A. Firsov (red.), Polyarony, Nauka, M., 1975 | DOI | MR | Zbl

[8] Devreese J. D. (ed.), Polarons in Ionic Crystals and Polar Semiconductors, North-Holland, Amsterdam, 1972

[9] Feinman R., Statisticheskaya mekhanika, Mir, M., 1975

[10] Kochetov E. A., Kuleshov S. P., Smondyrev M. A., EChAYa, 13:3 (1982), 635–668

[11] Rodriges K., Fedyanin V. K., EChAYa, 15:4 (1984), 870–934 | MR

[12] Höhler G., Müllensiefen A., Z. Phys., 157 (1959), 159–165 | DOI

[13] Röseler J., Phys. Stat. Sol., 25 (1968), 311–316 | DOI

[14] Saitoh M., J. Phys. Soc. Japan, 49:3 (1980), 878–885 | DOI | MR

[15] Kochetov E. A., Smondyrev M. A., TMF, 47:3 (1981), 375–386 ; Препринт P2-80-268, ОИЯИ, Дубна, 1980

[16] Marshall J. T., Mills L. R., Phys. Rev., 2B:8 (1970), 3143–3146 | DOI

[17] Luttinger J. M., Lu C. Y., Phys. Rev., 21B:10 (1980), 4251–4263 | DOI | MR

[18] Kholodenko A. L., Freed K. F., Phys. Rev., 27B:8 (1983), 4586–4600 | DOI | MR

[19] Castrigiano D. P. L., Kokiantonis N., Stierstorfer H., Phys. Lett., 104A:6/7 (1984), 364–369 | DOI | MR

[20] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1973 | MR | Zbl