Generator algebra of the asymptotic Poincaré group in the general theory of relativity
Teoretičeskaâ i matematičeskaâ fizika, Tome 65 (1985) no. 3, pp. 400-414 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Poisson brackets of the generators of the Hamiltonian formalism for general relativity are obtained with allowance for surface terms of arbitrary form. For Minkowski space there exists the asymptotic Poincaré group, which is the semidirect product of the Poincaré group and an infinite subgroup for which the algebra of generators with surface terms closes. A criterion invariant with respect to the choice of the coordinate system on the hypersurfaces is obtained for realization of the Poincaré group in asymptotically flat space-time. The “background” fiat metric on the hypersurfaces and Poincaré group that preserve it are determined nonuniquely; however, the numerical values of the generators do not depend on the freedom of this choice on solutions of the constraint equations. For an asymptotically Galilean metric, the widely used boundary conditions are determined more accurately. A prescription is given for application of the Arnowitt–Deser–Misner decomposition in the case of a slowly decreasing contribution from coordinate and time transformations.
@article{TMF_1985_65_3_a7,
     author = {V. O. Soloviev},
     title = {Generator algebra of the asymptotic {Poincar\'e} group in the general theory of relativity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {400--414},
     year = {1985},
     volume = {65},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_65_3_a7/}
}
TY  - JOUR
AU  - V. O. Soloviev
TI  - Generator algebra of the asymptotic Poincaré group in the general theory of relativity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 400
EP  - 414
VL  - 65
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_65_3_a7/
LA  - ru
ID  - TMF_1985_65_3_a7
ER  - 
%0 Journal Article
%A V. O. Soloviev
%T Generator algebra of the asymptotic Poincaré group in the general theory of relativity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 400-414
%V 65
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1985_65_3_a7/
%G ru
%F TMF_1985_65_3_a7
V. O. Soloviev. Generator algebra of the asymptotic Poincaré group in the general theory of relativity. Teoretičeskaâ i matematičeskaâ fizika, Tome 65 (1985) no. 3, pp. 400-414. http://geodesic.mathdoc.fr/item/TMF_1985_65_3_a7/

[1] Dirac P. A. M., Proc. Roy. Soc., A246 (1958), 333–343 ; Phys. Rev., 114:3 (1959), 924–930 | DOI | MR | Zbl | DOI | MR | Zbl

[2] Arnowitt R., Deser S., Misner C. W., Phys. Rev., 117:6 (1960), 1595–1602 ; 118:4 (1960), 1100–1104 ; 120:1 (1960), 313–320 ; 121:5 (1961), 1556–1566 ; 122:3 (1961), 997–1006 ; J. Math. Phys., 1:5 (1960), 434–439 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[3] Regge T., Teitelboim C., Ann. of Phys., 88:1 (1974), 286–318 | DOI | MR | Zbl

[4] Pukhov A. E., Vestn. MGU, Ser. Fiz., Astron., 24:3 (1983), 41–47

[5] Denisov V. I., Logunov A. A., Itogi nauki i tekhniki. Ser. sovrem. problemy matem., 21, VINITI, M., 1982 | MR | Zbl

[6] Denisov V. I., Solovev V. O., TMF, 56:2 (1983), 301–314 | MR | Zbl

[7] Faddeev L. D., UFN, 136:3 (1982), 435–457 | DOI | MR | Zbl

[8] Schoen R., Yau S.-T., Commun. Math. Phys., 65:1 (1979), 45–76 ; 79:1 (1981), 47–51 ; 79:2 (1981), 231–260 ; Phys. Rev. Lett., 43:20 (1979), 1457–1459 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR

[9] Witten E., Commun. Math. Phys., 80:3 (1981), 381–402 | DOI | MR | Zbl

[10] Solovev V. O., Prostranstvo Minkovskogo i asimptoticheskaya gruppa Puankare v obschei teorii otnositelnosti, Preprint IFVE OTF 83-193, IFVE, Serpukhov, 1983

[11] Bergmann P. G., Komar A., Int. J. Theor. Phys., 5:1 (1972), 15–28 | DOI | MR

[12] Teitelboim C., Ann. of Phys., 79:2 (1973), 542–557 | DOI

[13] Gyurshi F., “Vvedenie v teoriyu grupp”, Teoriya grupp i elementarnye chastitsy, Sbornik statei, ed. D. Ivanenko, Mir, M., 1967, 25–113 | MR

[14] Christodoulou D., Murchadha N. O., Commun. Math. Phys., 80:2 (1981), 271–300 | DOI | MR | Zbl

[15] Skhouten I. A., Stroik D. Dzh., Vvedenie v novye metody differentsialnoi geometrii, t. 2, IL, M., 1948

[16] Dirak P., Lektsii po kvantovoi mekhanike, Mir, M., 1968

[17] Solovev V. O., Teoremy Neter v kanonicheskom formalizme obschei teorii otnositelnosti. 2: Globalnyi podkhod, Preprint IFVE OTF 82-18, IFVE, Serpukhov, 1982

[18] Reula O., J. Math. Phys., 23:5 (1982), 810–814 | DOI | MR | Zbl

[19] Henneaux M., Teitelboim C., Phys. Let., 142B:5–6 (1984), 355–358 | DOI | MR