Classification of soliton solutions in an infinite-dimensional phase space on the basis of the theory of dynamical systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 65 (1985) no. 3, pp. 391-399 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A classification of soliton solutions is proposed for a number of completely integrable field equations when the solutions correspond to states periodic with respect to one variable but self-localized with respect to the other. The classification is based on the characteristic structure of the singular (separatrix) solutions of a dynamical system in infinite-dimensional phase space.
@article{TMF_1985_65_3_a6,
     author = {V. M. Eleonskii and N. E. Kulagin and N. S. Novozhilova},
     title = {Classification of soliton solutions in an infinite-dimensional phase space on the basis of the theory of dynamical systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {391--399},
     year = {1985},
     volume = {65},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_65_3_a6/}
}
TY  - JOUR
AU  - V. M. Eleonskii
AU  - N. E. Kulagin
AU  - N. S. Novozhilova
TI  - Classification of soliton solutions in an infinite-dimensional phase space on the basis of the theory of dynamical systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 391
EP  - 399
VL  - 65
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_65_3_a6/
LA  - ru
ID  - TMF_1985_65_3_a6
ER  - 
%0 Journal Article
%A V. M. Eleonskii
%A N. E. Kulagin
%A N. S. Novozhilova
%T Classification of soliton solutions in an infinite-dimensional phase space on the basis of the theory of dynamical systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 391-399
%V 65
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1985_65_3_a6/
%G ru
%F TMF_1985_65_3_a6
V. M. Eleonskii; N. E. Kulagin; N. S. Novozhilova. Classification of soliton solutions in an infinite-dimensional phase space on the basis of the theory of dynamical systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 65 (1985) no. 3, pp. 391-399. http://geodesic.mathdoc.fr/item/TMF_1985_65_3_a6/

[1] Eleonskii V. M., Kulagin N. E., Novozhilova N. S., Silin V. P., “O samolokalizovannykh v prostranstve i periodicheskikh vo vremeni resheniyakh volnovykh uravnenii”, Metody kachestvennoi teorii differentsialnykh uravnenii, Mezhvuz. sb., Gos. un-t, Gorkii, 1982, 73–92 | MR

[2] Eleonskii V. M., Kulagin N. E., Novozhilova N. S., Silin V. P., TMF, 60:3 (1984), 395–403 | MR

[3] Lerman L. M., Umanskii Ya. L., UMN, 38:5 (1983), 195–196 | MR | Zbl

[4] S. P. Novikov (red.), Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980 | MR

[5] Khirota R., “Pryamye metody v teorii solitonov”, Solitony, eds. R. Bullaf, F. Kodri, Mir, M., 1983, 175–192 | MR

[6] Shirokov A. S., Kratkie soobscheniya po fizike FIAN, 1979, no. 12, 32–36

[7] Segur H., J. Math. Phys., 24:6 (1983), 1439–1443 | DOI | MR

[8] Matveev V. B., “Rimanovy poverkhnosti i periodicheskie resheniya nelineinogo uravneniya tipa Kortevega - de Vriza”, Nelineinye volny, Nauka, M., 1979, 20–36 | MR

[9] Zhdanov S. K., Trubnikov B. A., Pisma v ZhETF, 39:3 (1984), 110–113 | MR