Coulomb problem with short-range interaction: Exactly solvable model
Teoretičeskaâ i matematičeskaâ fizika, Tome 65 (1985) no. 2, pp. 238-249
Voir la notice de l'article provenant de la source Math-Net.Ru
The nonrelativistic Coulomb problem with short-range interaction is considered. The
strong potential $V_s(r)$ is modeled by a delta-function interaction on a sphere $r=r_0$.
Exact solutions to the Schrödinger equation are obtained for states with arbitrary
angular momentum $l$ together with explicit analytic expressions for the scattering
lengths, effective ranges, etc. Comparison of the exact solutions with the approximate
formulas established earlier [1–4] for arbitrary short-range potential $V_s(r)$ makes
it possible to determine the limits of applicability of these approximations.
@article{TMF_1985_65_2_a7,
author = {V. D. Mur and V. S. Popov},
title = {Coulomb problem with short-range interaction: {Exactly} solvable model},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {238--249},
publisher = {mathdoc},
volume = {65},
number = {2},
year = {1985},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1985_65_2_a7/}
}
TY - JOUR AU - V. D. Mur AU - V. S. Popov TI - Coulomb problem with short-range interaction: Exactly solvable model JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1985 SP - 238 EP - 249 VL - 65 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1985_65_2_a7/ LA - ru ID - TMF_1985_65_2_a7 ER -
V. D. Mur; V. S. Popov. Coulomb problem with short-range interaction: Exactly solvable model. Teoretičeskaâ i matematičeskaâ fizika, Tome 65 (1985) no. 2, pp. 238-249. http://geodesic.mathdoc.fr/item/TMF_1985_65_2_a7/