Effective chiral Lagrangian from $SU(\infty)$ quantum chromodynamics
Teoretičeskaâ i matematičeskaâ fizika, Tome 65 (1985) no. 2, pp. 192-201 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A nonlinear chiral Lagrangian, which includes an anomalous Wess–Zumino interaction and a mass term describing splitting of the singlet and the nonsinglet meson, is obtained as the low-energy approximation of QCD at large $N$. This is achieved by making, in the functional integral, a change of variables that determines the degrees of freedom responsible for the breaking of the chiral symmetry and corresponding to pseudosealar mesons.
@article{TMF_1985_65_2_a3,
     author = {N. I. Karchev and A. A. Slavnov},
     title = {Effective chiral {Lagrangian} from $SU(\infty)$ quantum chromodynamics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {192--201},
     year = {1985},
     volume = {65},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_65_2_a3/}
}
TY  - JOUR
AU  - N. I. Karchev
AU  - A. A. Slavnov
TI  - Effective chiral Lagrangian from $SU(\infty)$ quantum chromodynamics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 192
EP  - 201
VL  - 65
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_65_2_a3/
LA  - ru
ID  - TMF_1985_65_2_a3
ER  - 
%0 Journal Article
%A N. I. Karchev
%A A. A. Slavnov
%T Effective chiral Lagrangian from $SU(\infty)$ quantum chromodynamics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 192-201
%V 65
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1985_65_2_a3/
%G ru
%F TMF_1985_65_2_a3
N. I. Karchev; A. A. Slavnov. Effective chiral Lagrangian from $SU(\infty)$ quantum chromodynamics. Teoretičeskaâ i matematičeskaâ fizika, Tome 65 (1985) no. 2, pp. 192-201. http://geodesic.mathdoc.fr/item/TMF_1985_65_2_a3/

[1] Weinberg S., Phys. Rev. Lett., 18 (1967), 188–192 ; Phys. Rev., 166 (1968), 1568–1579 | DOI | DOI

[2] Coleman S., Wess J., Zumino B., Phys. Rev., 177 (1969), 2239–2246 | DOI

[3] Weinberg S., Physica, A96 (1979), 327–341 | DOI

[4] Wess J., Zumino B., Phys. Lett., B37 (1971), 95–98 | DOI | MR

[5] Witten E., Nucl. Phys., B156 (1979), 269–282 | DOI | MR

[6] Veneziano G., Nucl. Phys., B159 (1979), 213–221 | DOI | MR

[7] Arnowitt R., Nath P., Nucl. Phys., B234 (1982), 251–264 | MR

[8] Balachandran A. et al., Phys. Rev. Lett., 49 (1982), 1124–1127 | DOI

[9] Witten E., Nucl. Phys., B223 (1983), 422–432 | DOI | MR

[10] Dhar A., Wadia S., Phys. Rev. Lett., 52 (1984), 959–962 | DOI | MR

[11] Dyakonov D., Eides M., Pisma v ZhETF, 38 (1983), 358–362

[12] Bardeen W., Phys. Rev., 184 (1969), 1848–1856 ; Andrianov A., Bonora L., Nucl. Phys., B233 (1984), 232–246 ; Gasser J., Leutwiller H., CERN preprint TH-3798, 1984 | DOI | DOI

[13] Rossi G., Testa M., Yosida K., Phys. Lett., B134 (1984), 78–82 | DOI

[14] 't Hooft G., Nucl. Phys., B72 (1974), 461–475 | DOI

[15] Slavnov A. A., Phys. Lett., B112 (1982), 154–157 | DOI | MR

[16] Karchev N., Phys. Lett., B133 (1983), 201–205 | DOI