Stability of Gibbs distributions
Teoretičeskaâ i matematičeskaâ fizika, Tome 65 (1985) no. 2, pp. 296-302
Voir la notice de l'article provenant de la source Math-Net.Ru
Lattice systems with binary interaction are considered. The Gibbs distributions
characterizing the states of the systems are determined by generating functionals
that satisfy Bogolyubov's equation. It is shown that to different regularity conditions
of the Gibbs distributions there correspond different natures of the continuous
dependence of the solutions of the Bogolyubov equation on the external field. This
makes it possible to regard the regularity conditions as conditions of stability of
the Gibbs distributions with respect to weak perturbations of them by external fields.
@article{TMF_1985_65_2_a12,
author = {V. V. Krivolapova and G. I. Nazin},
title = {Stability of {Gibbs} distributions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {296--302},
publisher = {mathdoc},
volume = {65},
number = {2},
year = {1985},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1985_65_2_a12/}
}
V. V. Krivolapova; G. I. Nazin. Stability of Gibbs distributions. Teoretičeskaâ i matematičeskaâ fizika, Tome 65 (1985) no. 2, pp. 296-302. http://geodesic.mathdoc.fr/item/TMF_1985_65_2_a12/