Nonlinear model of Schrödinger type: Conservation laws, Hamiltonian structure, and complete integrability
Teoretičeskaâ i matematičeskaâ fizika, Tome 65 (1985) no. 2, pp. 271-284 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method is proposed for finding Lax type representations for nonlinear evolution (one-dimensional) equations of mathematical physics. It is shown that the Schrödinger type nonlinear model $\psi_t-i\psi_{xx}+2|\psi|^2\psi_x=0$ admits a Lax-type representation and is a Hamiltonian completely integrable dynamical system. Exact quasiperiodic (finite-gap, i.e having only a finite number of stability bands in its spectrum) solutions of this system are obtained in terms of Riemann theta functions.
@article{TMF_1985_65_2_a10,
     author = {N. N. Bogolyubov (Jr.) and A. K. Prikarpatskii and A. M. Kurbatov and V. G. Samoilenko},
     title = {Nonlinear model of {Schr\"odinger} type: {Conservation} laws, {Hamiltonian} structure, and complete integrability},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {271--284},
     year = {1985},
     volume = {65},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_65_2_a10/}
}
TY  - JOUR
AU  - N. N. Bogolyubov (Jr.)
AU  - A. K. Prikarpatskii
AU  - A. M. Kurbatov
AU  - V. G. Samoilenko
TI  - Nonlinear model of Schrödinger type: Conservation laws, Hamiltonian structure, and complete integrability
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 271
EP  - 284
VL  - 65
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_65_2_a10/
LA  - ru
ID  - TMF_1985_65_2_a10
ER  - 
%0 Journal Article
%A N. N. Bogolyubov (Jr.)
%A A. K. Prikarpatskii
%A A. M. Kurbatov
%A V. G. Samoilenko
%T Nonlinear model of Schrödinger type: Conservation laws, Hamiltonian structure, and complete integrability
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 271-284
%V 65
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1985_65_2_a10/
%G ru
%F TMF_1985_65_2_a10
N. N. Bogolyubov (Jr.); A. K. Prikarpatskii; A. M. Kurbatov; V. G. Samoilenko. Nonlinear model of Schrödinger type: Conservation laws, Hamiltonian structure, and complete integrability. Teoretičeskaâ i matematičeskaâ fizika, Tome 65 (1985) no. 2, pp. 271-284. http://geodesic.mathdoc.fr/item/TMF_1985_65_2_a10/

[1] Khatson V., Pim Dzh., Prilozheniya funktsionalnogo analiza i teorii operatorov, Mir, M., 1983 | MR

[2] Skripnik A. I., Prikarpatskii A. K., Samoilenko V. G., DAN USSR, ser. A, 1985, no. 5, 21–23 | MR

[3] Balakrishnan A. V., Prikladnoi funktsionalnyi analiz, Nauka, M., 1980 | MR | Zbl

[4] Cupershmidt B. A., Lecture Notes Math., 775, 1980, 162–218 | DOI

[5] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii: Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982 | MR

[6] Lax P. D., Commun. Pure Appl. Math., 28:2 (1975), 141–188 | MR | Zbl

[7] Novikov S. P. (red.), Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980 | MR

[8] Prikarpatskii A. K., Samoilenko V. G., Dinamicheskie sistemy, assotsiirovannye s periodicheskim operatorom Diraka, i ikh polnaya integriruemost, Preprint 83, 44, In-t matematiki AN USSR, Kiev, 1983 | MR

[9] Chen H.-H., Lee Y., Liu C., Physica Scripta, 20:3 (1979), 490–493 | DOI | MR

[10] Fuchsteiner B., Progr. Theor. Phys., 68:4 (1982), 1082–1104 | DOI | MR

[11] Mitropolskii Yu. A., Prikarpatskii A. K., Samoilenko V. G., DAN SSSR, 297:5 (1985), 1217–1219

[12] Sidorenko Yu. N., Dokl. AN USSR, ser. A, 1985, no. 11, 25–28

[13] Wadati M., Sogo K., J. Phys. Soc. Japan, 52:2 (1983), 394–398 | DOI | MR

[14] Its A. R., Matveev V. B., Zap. nauchn. semin. LOMI, 101, 1981, 64–76 | MR | Zbl

[15] Prikarpatskii A. K., TMF, 47:3 (1981), 323–332 | MR | Zbl

[16] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1978 | MR

[17] Its A. R., Vestn. Leningr. un-ta, 1976, no. 7, 39–46 | MR | Zbl

[18] Its A. R., Problemy matematicheskoi fiziki, LGU, L., 1980, 118–137 | MR

[19] Springer Dzh., Vvedenie v teoriyu rimanovykh poverkhnostei, IL, M., 1960 | MR

[20] Dubrovin B. A., Funkts. analiz i ego prilozh., 9:3 (1975), 41–51 | MR | Zbl

[21] Matveev V. B., Abelian functions and solitons, Preprint No 373, Wroclaw University, 1976