Relaxation of a quantum particle in a magnetic field
Teoretičeskaâ i matematičeskaâ fizika, Tome 65 (1985) no. 1, pp. 93-107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Fokker–Planek equation for the Wigner function of a quantum system with given arbitrary linear equations of motion for the mean values of the coordinates and momenta is considered. Conditions on the matrix of diffusion coefficients are found that guarantee the preservation in time of the non-negative definiteness of the density matrix. A detailed study is made of the quantum description of a damped isotropic two-dimensional harmonic oscillator in a homogeneous magnetic field for arbitrary relationships between the intrinsic and cyclotron frequencies, the coefficient of friction, and the temperature; various limiting cases of this problem are also considered.
@article{TMF_1985_65_1_a9,
     author = {V. V. Dodonov and O. V. Man'ko},
     title = {Relaxation of a~quantum particle in a~magnetic field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {93--107},
     year = {1985},
     volume = {65},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_65_1_a9/}
}
TY  - JOUR
AU  - V. V. Dodonov
AU  - O. V. Man'ko
TI  - Relaxation of a quantum particle in a magnetic field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 93
EP  - 107
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_65_1_a9/
LA  - ru
ID  - TMF_1985_65_1_a9
ER  - 
%0 Journal Article
%A V. V. Dodonov
%A O. V. Man'ko
%T Relaxation of a quantum particle in a magnetic field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 93-107
%V 65
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1985_65_1_a9/
%G ru
%F TMF_1985_65_1_a9
V. V. Dodonov; O. V. Man'ko. Relaxation of a quantum particle in a magnetic field. Teoretičeskaâ i matematičeskaâ fizika, Tome 65 (1985) no. 1, pp. 93-107. http://geodesic.mathdoc.fr/item/TMF_1985_65_1_a9/

[1] Wigner E., Phys. Rev., 40:5 (1932), 749–759 | DOI | MR

[2] De Groot S. R., Sattorp L. G., Elektrodinamika, Nauka, M., 1982, 308–391.

[3] Tatarskii V. I., UFN, 189:4 (1983), 587–619 | DOI | MR

[4] Hillery M., O'Connell R. F., Scully M. O., Wigner E. P., Phys. Rep., 106:3 (1984), 121–167 | DOI | MR

[5] Dekker H., Phys. Rep., 80:1 (1981), 1–112 | DOI | MR

[6] Belavin A. A., Zeldovich B. Ya., Perelomov A. M., Popov V. S., ZhETF, 56:1 (1969), 264–274

[7] Davies E. B., Quantum theory of open systems, Academic Press, London, 1976, 83–84. | MR

[8] Spohn H., Rev. Mod. Phys., 52:3 (1980), 569–615 | DOI | MR

[9] Leks M., Fluktuatsii i kogerentnye yavleniya, Mir, M., 1974

[10] Klimontovich Yu. L., Silin V. P., UFN, 70:2 (1960), 247–286 | DOI | MR | Zbl

[11] Kubo R., J. Phys. Soc. Japan, 19:11 (1964), 2127–2139 | DOI | MR | Zbl

[12] Levinson I. B., ZhETF, 57:2 (1969), 660–672 | MR

[13] Gantmakher F. R., Teoriya matrits, Nauka, M., 1966, 276–279. | MR

[14] Dodonov V. V., Manko V. I., Tr. FIAN SSSR, 152, 1983, 145–193 | MR

[15] Dodonov V. V., Manko V. I., Teoretiko-gruppovye metody v fizike. Trudy mezhdunarodnogo seminara, t. II, Nauka, M., 1983, 109–122 | MR

[16] Yannouleas C., Quantum Brownian motion from RPA dynamics: the master and Fokker - Planck equations, Preprint GSI-84-30, Darmstadt, 1984 | MR