Supersymmetric quantum mechanics and spontaneous breaking of supersymmetry at the quantum level
Teoretičeskaâ i matematičeskaâ fizika, Tome 65 (1985) no. 1, pp. 84-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The most general Lagrangian of supersymmetric quantum mechanics is obtained. In the case of the nonlinear quantum-mechanical $\sigma$-model, a mechanism of spontaneous breaking of the supersymmetry at the quantum level related to the uncertainty of the operator ordering is found.
@article{TMF_1985_65_1_a8,
     author = {V. P. Akulov and A. I. Pashnev},
     title = {Supersymmetric quantum mechanics and spontaneous breaking of supersymmetry at the quantum level},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {84--92},
     year = {1985},
     volume = {65},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_65_1_a8/}
}
TY  - JOUR
AU  - V. P. Akulov
AU  - A. I. Pashnev
TI  - Supersymmetric quantum mechanics and spontaneous breaking of supersymmetry at the quantum level
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 84
EP  - 92
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_65_1_a8/
LA  - ru
ID  - TMF_1985_65_1_a8
ER  - 
%0 Journal Article
%A V. P. Akulov
%A A. I. Pashnev
%T Supersymmetric quantum mechanics and spontaneous breaking of supersymmetry at the quantum level
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 84-92
%V 65
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1985_65_1_a8/
%G ru
%F TMF_1985_65_1_a8
V. P. Akulov; A. I. Pashnev. Supersymmetric quantum mechanics and spontaneous breaking of supersymmetry at the quantum level. Teoretičeskaâ i matematičeskaâ fizika, Tome 65 (1985) no. 1, pp. 84-92. http://geodesic.mathdoc.fr/item/TMF_1985_65_1_a8/

[1] Berezin F. A., Marinov M. S., Pisma ZhETF, 21 (1875), 678

[2] Brink L., Deser S. et al., Phys. Lett., 64B (1976), 435 | DOI

[3] Gershun V. D., Tkach V. I., “Opisanie chastits so spinom na osnove lokalnoi supersimmetrii”, Teoretiko-gruppovye metody v fizike, T. 2, Nauka, M., 1980, 217–220

[4] Parisi G., Sourlas S., Phys. Rev. Lett., 43 (1979), 744 | DOI

[5] Balantenkin A., Bars J., Iachello F., Nucl. Phys., A370 (1981), 284–316 | DOI

[6] Luis F. Urrutia, Hermander F., Phys. Rev. Lett., 51 (1983), 755–758 | DOI

[7] Casalbuoni R., Nuovo Cim., 33A (1976), 389 | DOI | MR

[8] Salomonson Per., Phys. Rev., D18 (1978), 1868 | MR

[9] Witten E., Nucl. Phys., B188 (1981), 513 | DOI | MR | Zbl

[10] Davis A. C., Macfarlane A. J., van Holten J. W., Nucl. Phys., B232 (1983), 300–312

[11] De Crombrugghe, Rittenberg V., Supersymmetric Quantum Mechanics, Preprint Bonn HE-82-35, Bonn, 1982 | MR

[12] Lancaster D., Nuovo Cim., 79A (1984), 28 | DOI

[13] Smilga A. V., Instanton effects in $N=2$ supersymmetric quantum mechanics, Preprint ITEP-42, ITEP, M., 1984 | MR

[14] Kartan E., Geometriya grupp Li i simmetricheskie prostranstva, IL, M., 1978

[15] Volkov D. V., Zheltukhin A. A., Bliokh Yu. P., FTT, 13 (1971), 1668 | MR

[16] De Witt B. S., Phys. Rev., 85 (1952), 653 | DOI | Zbl

[17] Omote M., Sato H., Progr. Theor. Phys., 47 (1972), 1367 | DOI | MR | Zbl