Conformal invariance in gauge theories. I. Quantum electrodynamics
Teoretičeskaâ i matematičeskaâ fizika, Tome 65 (1985) no. 1, pp. 70-78 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The present cycle of studies is based on the assumption that gauge fields transform in accordance with nonprincipal representations of the conformal group. As a consequence, it is shown that the conformally invariant two-point functions have nontrivial transverse parts. Conformal quantum electrodynamics is considered in this, the first paper. A nondegenerate conformally invariant Lagrangian of the free electromagnetic field is constructed, and the validity of canonical quantization is verified. The physical subspace is distinguished in an invariant manner. The inclusion of an interaction with an external current is discussed.
@article{TMF_1985_65_1_a6,
     author = {R. P. Zaikov},
     title = {Conformal invariance in gauge theories. {I.~Quantum} electrodynamics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {70--78},
     year = {1985},
     volume = {65},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_65_1_a6/}
}
TY  - JOUR
AU  - R. P. Zaikov
TI  - Conformal invariance in gauge theories. I. Quantum electrodynamics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 70
EP  - 78
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_65_1_a6/
LA  - ru
ID  - TMF_1985_65_1_a6
ER  - 
%0 Journal Article
%A R. P. Zaikov
%T Conformal invariance in gauge theories. I. Quantum electrodynamics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 70-78
%V 65
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1985_65_1_a6/
%G ru
%F TMF_1985_65_1_a6
R. P. Zaikov. Conformal invariance in gauge theories. I. Quantum electrodynamics. Teoretičeskaâ i matematičeskaâ fizika, Tome 65 (1985) no. 1, pp. 70-78. http://geodesic.mathdoc.fr/item/TMF_1985_65_1_a6/

[1] Dobrev V. K., Mack G., Petkova V. B., Todorov I. T., Petrova S. G., Harmonic analisis in the $n$-dimensional Lorentz group and its application to conformal quantum field theory (1977), Lecture notes in Physics, 63, Springer, 1977 | Zbl

[2] Todorov I. T., Mintchev M. C., Petkova V. B., Conformal invariance in quantum field theory, Scuola Normale Superiore, Piza, 1978 | MR | Zbl

[3] Baker M., Johnson K., Physica, 96A:1 (1979), 120–128 | DOI | MR

[4] Sotkov G. M., Stoyanov D. Tz., J. Phys. A, 13:8 (1980), 2807–2816 | DOI | MR

[5] Sotkov G. M., Stoyanov D. Tz., J. Phys. A, 16:8 (1983), 2817–2826 | DOI | MR

[6] Palchik M. Ya., J. Phys. A, 16 (1983), 1523–1527 | DOI

[7] Bayen F., Flato M., J. Math. Phys., 17:7 (1976), 1112–1114 | DOI | MR

[8] Binegar B., Fronsdal C., Heidenreich W., J. Math. Phys., 24 (1983), 2827–2846 | DOI | MR

[9] Nakanishi N., Progr. Theor. Phys., 35:16 (1966), 1111–1116 | DOI | MR

[10] Kugo T., Ojima I., Sup. Progr. Theor. Phys., 66:6 (1979), 1–130 | DOI