Classical limit of the quantum inverse scattering problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 65 (1985) no. 1, pp. 35-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The passage to the limit of classical mechanics is realized in the formalism of Marchenko's method for a spherically symmetric inverse problem of quantum scattering for fixed angular momentum. The limit is considered for the general case of partial waves with arbitrary values of the orbital number $l>0$ in the lowest order of perturbation theory. It is shown how in the limit $l>0$ in the quantum inverse problem the integral Abel transformation characteristic of classical inverse problems arises. The classical inversion formula with delay time is derived from the Marchenko equation.
@article{TMF_1985_65_1_a3,
     author = {I. V. Bogdanov},
     title = {Classical limit of the quantum inverse scattering problem},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {35--43},
     year = {1985},
     volume = {65},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_65_1_a3/}
}
TY  - JOUR
AU  - I. V. Bogdanov
TI  - Classical limit of the quantum inverse scattering problem
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 35
EP  - 43
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_65_1_a3/
LA  - ru
ID  - TMF_1985_65_1_a3
ER  - 
%0 Journal Article
%A I. V. Bogdanov
%T Classical limit of the quantum inverse scattering problem
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 35-43
%V 65
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1985_65_1_a3/
%G ru
%F TMF_1985_65_1_a3
I. V. Bogdanov. Classical limit of the quantum inverse scattering problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 65 (1985) no. 1, pp. 35-43. http://geodesic.mathdoc.fr/item/TMF_1985_65_1_a3/

[1] Faddeev L. D., UMN, 14:4 (1959), 57–119 | MR

[2] Faddeev L. D., J. Math. Phys., 4:1 (1963), 72–104 | DOI | MR

[3] Agranovich Z. S., Marchenko V. A., Obratnaya zadacha teorii rasseyaniya, KhGU, Kharkov, 1960

[4] De Alfaro V., Redzhe T., Potentsialnoe rasseyanie, Mir, M., 1966 | Zbl

[5] Nyuton R., Teoriya rasseyaniya voln i chastits, Mir, M., 1969 | MR

[6] Shadan K., Sabate P., Obratnye zadachi v kvantovoi teorii rasseyaniya, Mir, M., 1980 | MR

[7] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR

[8] Wheeler J. A., Studies in mathematical physics, Princeton Univ., Princeton, 1976, 351–422

[9] Hoyt F. C., Phys. Rev., 55:7 (1939), 664–665 | DOI | Zbl

[10] Firsov O. V., ZhETF, 24:3 (1953), 279–283

[11] Bogdanov I. V., Demkov Yu. N., ZhETF, 82:6 (1982), 1798–1806 | MR

[12] Korn G., Korn T., Spravochnik po matematike, Nauka, M., 1974 | MR

[13] Miller W. H., J. Chem. Phys., 51:9 (1969), 3631–3638 | DOI | MR

[14] Miller W. H., J. Chem. Phys., 54:10 (1971), 4174–4177 | DOI | MR

[15] Landau L. D., Lifshits E. M., Kvantovaya mekhanika, Nauka, M., 1974 | MR

[16] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, T. 2, Nauka, M., 1974 | MR

[17] Vatson G. N., Teoriya besselevykh funktsii, ch. 1, IL, M., 1949