Generalized pointlike interactions in $R_3$ and related models with rational $S$ matrix II.~$l=1$
Teoretičeskaâ i matematičeskaâ fizika, Tome 65 (1985) no. 1, pp. 24-34

Voir la notice de l'article provenant de la source Math-Net.Ru

A description is given of “inequivalen” Hamiltonians on a Hilbert space $\mathfrak{H}^N$ which is obtained by restricting the Pontryagin space of the form $$ \Pi_1^N=\mathscr{H}_{+}^N[+]\mathscr{H}_{-},\quad\mathscr{H}_{+}^N=L_2(R_3)\oplus C_{N+1}\quad\mathscr{H}_{-}=C_1 $$ to a hyperplane of unit codimensionality, the Hamiltonians leading to a rational $S$ matrix in the sense of scattering theory in the pair of spaces $L_2$ and $\mathfrak{H}^N$. The use in intermediate considerations of spaces with indefinite metric is an essential and distinctive feature of the ease considered. Hamiltonians on $\mathfrak{H}^1$ are characterized as models of generalized pointlike interactions.
@article{TMF_1985_65_1_a2,
     author = {Yu. G. Shondin},
     title = {Generalized pointlike interactions in $R_3$ and related models with rational $S$ matrix {II.~}$l=1$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {24--34},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_65_1_a2/}
}
TY  - JOUR
AU  - Yu. G. Shondin
TI  - Generalized pointlike interactions in $R_3$ and related models with rational $S$ matrix II.~$l=1$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 24
EP  - 34
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_65_1_a2/
LA  - ru
ID  - TMF_1985_65_1_a2
ER  - 
%0 Journal Article
%A Yu. G. Shondin
%T Generalized pointlike interactions in $R_3$ and related models with rational $S$ matrix II.~$l=1$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 24-34
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1985_65_1_a2/
%G ru
%F TMF_1985_65_1_a2
Yu. G. Shondin. Generalized pointlike interactions in $R_3$ and related models with rational $S$ matrix II.~$l=1$. Teoretičeskaâ i matematičeskaâ fizika, Tome 65 (1985) no. 1, pp. 24-34. http://geodesic.mathdoc.fr/item/TMF_1985_65_1_a2/