Generalized pointlike interactions in $R_3$ and related models with rational $S$ matrix II.~$l=1$
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 65 (1985) no. 1, pp. 24-34
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A description is given of “inequivalen” Hamiltonians on a Hilbert space $\mathfrak{H}^N$ which is obtained by restricting the Pontryagin space of the form
$$
\Pi_1^N=\mathscr{H}_{+}^N[+]\mathscr{H}_{-},\quad\mathscr{H}_{+}^N=L_2(R_3)\oplus C_{N+1}\quad\mathscr{H}_{-}=C_1
$$
to a hyperplane of unit codimensionality, the Hamiltonians leading to a rational $S$
matrix in the sense of scattering theory in the pair of spaces $L_2$ and $\mathfrak{H}^N$. The use in intermediate considerations of spaces with indefinite metric is an essential and
distinctive feature of the ease considered. Hamiltonians on $\mathfrak{H}^1$ are characterized
as models of generalized pointlike interactions.
			
            
            
            
          
        
      @article{TMF_1985_65_1_a2,
     author = {Yu. G. Shondin},
     title = {Generalized pointlike interactions in $R_3$ and related models with rational $S$ matrix {II.~}$l=1$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {24--34},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_65_1_a2/}
}
                      
                      
                    TY - JOUR AU - Yu. G. Shondin TI - Generalized pointlike interactions in $R_3$ and related models with rational $S$ matrix II.~$l=1$ JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1985 SP - 24 EP - 34 VL - 65 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1985_65_1_a2/ LA - ru ID - TMF_1985_65_1_a2 ER -
Yu. G. Shondin. Generalized pointlike interactions in $R_3$ and related models with rational $S$ matrix II.~$l=1$. Teoretičeskaâ i matematičeskaâ fizika, Tome 65 (1985) no. 1, pp. 24-34. http://geodesic.mathdoc.fr/item/TMF_1985_65_1_a2/
