Gell–Mann–Low function of the chiral model on the homogeneous berger space
Teoretičeskaâ i matematičeskaâ fizika, Tome 65 (1985) no. 1, pp. 155-160 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the two-dimensional nonlinear sigma model on the homogeneous space $Sp(2)/SU(2)$ (Berger manifold) the method of sectional curvatures is used to find the Gell–Mann–Low $\beta$ function in the single-loop approximation. The result indicates that the model is an asymptotically free renormalizable nonlinear model.
@article{TMF_1985_65_1_a14,
     author = {A. M. Gavrilik},
     title = {Gell{\textendash}Mann{\textendash}Low function of the chiral model on the homogeneous berger space},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {155--160},
     year = {1985},
     volume = {65},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_65_1_a14/}
}
TY  - JOUR
AU  - A. M. Gavrilik
TI  - Gell–Mann–Low function of the chiral model on the homogeneous berger space
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 155
EP  - 160
VL  - 65
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_65_1_a14/
LA  - ru
ID  - TMF_1985_65_1_a14
ER  - 
%0 Journal Article
%A A. M. Gavrilik
%T Gell–Mann–Low function of the chiral model on the homogeneous berger space
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 155-160
%V 65
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1985_65_1_a14/
%G ru
%F TMF_1985_65_1_a14
A. M. Gavrilik. Gell–Mann–Low function of the chiral model on the homogeneous berger space. Teoretičeskaâ i matematičeskaâ fizika, Tome 65 (1985) no. 1, pp. 155-160. http://geodesic.mathdoc.fr/item/TMF_1985_65_1_a14/

[1] Brezin E., Hikami S., Zinn-Justin J., Nucl. Phys., B165:3 (1980), 528–544 | DOI

[2] Polyakov A. M., Phys. Lett., 59B:1 (1975), 79–81 | DOI | MR

[3] Hikami S., Progr. Theor. Phys., 62:1 (1979), 226–233 | DOI

[4] McKane A., Stone M., Nucl. Phys., B163:2 (1980), 169–188 | DOI

[5] Gavrilik A. M., Ob asimptoticheskoi svobode kiralnykh modelei na zascheplennykh rimanovykh prostranstvakh, Preprint ITF-84-164R, ITF, Kiev, 1984

[6] Berger M., Ann. Scuola Norm. Sup. Pisa, 15:1 (1961), 179–246 | MR | Zbl

[7] Volkov D. V., Fenomenologicheskii lagranzhian vzaimodeistviya goldstounovskikh chastits, Preprint ITF-69-75, ITF, Kiev, 1969

[8] Friedan B., Phys. Rev. Lett., 45:13 (1980), 1057–1060 | DOI | MR

[9] Shirkov D. V., TMF, 60:2 (1984), 218–223 | MR

[10] Alvarez-Gaume L., Freedman D. Z., Mukhi S., Ann. Phys., 134:1 (1981), 85–109 | DOI | MR

[11] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979 ; Кобаяси Ш., Номидзу К., Основы дифференциальной геометрии, Т. I, Наука, М., 1981 | MR | MR

[12] Hikami S., Phys. Lett., 98B:3 (1981), 208–210 | DOI | MR

[13] Morozov A. Yu., Perelomov A. M., Shifman M. A., Exact Gell-Mann - Low Function of Supersymmetric Kahler Sigma-Models, Preprint ITEP-14, ITEP, Moscow, 1984 | MR

[14] Eliasson H. I., Math. Ann., 164:4 (1966), 317–323 | DOI | MR | Zbl

[15] Houghton A. et al., Phys. Rev. Lett., 45:5 (1980), 394–397 | DOI | MR