Resonance tunneling through a nonstationary potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 64 (1985) no. 2, pp. 233-244
Cet article a éte moissonné depuis la source Math-Net.Ru
In the first order of semiclassical perturbation theory, with allowance for many-quantum transitions, a study is made of resonance tunneling through a two-hump nonstationary potential. The problem is reduced to the solution of a functional equation for the transmission probability amplitude. This equation is solved in general form for the case of nonresonance tunneling. A condition of suppression of resonance by nonstationary effects is obtained. The transmission amplitude is found in the case when the twohump potential oscillates as a whole. Periodic, quasiperiodie, and random nonstationary perturbations are considered.
@article{TMF_1985_64_2_a5,
author = {D. G. Sokolovskii and M. Yu. Sumetsky},
title = {Resonance tunneling through a~nonstationary potential},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {233--244},
year = {1985},
volume = {64},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1985_64_2_a5/}
}
D. G. Sokolovskii; M. Yu. Sumetsky. Resonance tunneling through a nonstationary potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 64 (1985) no. 2, pp. 233-244. http://geodesic.mathdoc.fr/item/TMF_1985_64_2_a5/
[1] Fröman N., Dammert Ö., Nucl. Phys., A147 (1970), 627–635 | DOI | MR
[2] Dubrovskii G. V., Sumetskii M. Yu., TMF, 32:3 (1977), 380–391
[3] Lifshits I. M., Kirpichenkov V. Ya., ZhETF, 77 (1979), 989–1000
[4] Sumetskii M. Yu., YaF, 36 (1982), 130–144
[5] Varshalovich D. A., Dyakonov M. I., ZhETF, 60 (1971), 90–101 | MR
[6] Sumetskii M. Yu., FTT, 24 (1982), 3513–3515
[7] Kazanskii A. K., Ostrovskii V. I., Solovev E. A., ZhETF, 70:2 (1976), 493–502
[8] Ostrovskii V. N., TMF, 33:1 (1977), 126–135 | MR
[9] Baz A. I., Zeldovich Ya. B., Perelomov A. M., Rasseyanie, reaktsii i raspady v nerelyativistskoi kvantovoi mekhanike, Nauka, M., 1971 | Zbl
[10] Feinman R., Khibs A., Kvantovaya mekhanika i integraly po traektoriyam, Mir, M., 1968 | MR