Fluctuation phenomena in the tricritical behavior of two models with tensor order parameter
Teoretičeskaâ i matematičeskaâ fizika, Tome 64 (1985) no. 2, pp. 312-322 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The fluctuation theory of phase transitions is used to study tricritical behavior in the isotropic phase of two models in which the order parameter is a $p$-dimensional symmetric traceless tensor. For arbitrary values of $p$, differential equations are obtained for the vertex functions from the second to the sixth orders as functions of the reciprocal susceptibility. The cases $p=1,2,3$ are studied. For $p=1,2$, the models exhibit tricritical behavior. For $p=3$, allowance for fluctuations leads in the general case to the appearance of instability in the critical behavior of the models and to the replacement of tricritical behavior by a phase transition of the first kind.
@article{TMF_1985_64_2_a12,
     author = {A. V. Smirnov and B. A. Storonkin},
     title = {Fluctuation phenomena in the tricritical behavior of two models with tensor order parameter},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {312--322},
     year = {1985},
     volume = {64},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_64_2_a12/}
}
TY  - JOUR
AU  - A. V. Smirnov
AU  - B. A. Storonkin
TI  - Fluctuation phenomena in the tricritical behavior of two models with tensor order parameter
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 312
EP  - 322
VL  - 64
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_64_2_a12/
LA  - ru
ID  - TMF_1985_64_2_a12
ER  - 
%0 Journal Article
%A A. V. Smirnov
%A B. A. Storonkin
%T Fluctuation phenomena in the tricritical behavior of two models with tensor order parameter
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 312-322
%V 64
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1985_64_2_a12/
%G ru
%F TMF_1985_64_2_a12
A. V. Smirnov; B. A. Storonkin. Fluctuation phenomena in the tricritical behavior of two models with tensor order parameter. Teoretičeskaâ i matematičeskaâ fizika, Tome 64 (1985) no. 2, pp. 312-322. http://geodesic.mathdoc.fr/item/TMF_1985_64_2_a12/

[1] De Gennes P. G., Phys. Lett. A, A30:8 (1969), 454–455 | DOI

[2] Ashkin J., Teller E., Phys. Rev., 64:5–6 (1943), 178–184 | DOI

[3] Potts R. B., Proc. Camb. Phil. Soc., 48 (1952), 106–109 | DOI | MR | Zbl

[4] Anisimov M. A., Garber S. R. i dr., ZhETF, 72:5 (1977), 1983–1993 | MR

[5] Anisimov M. A., Zaprudskii V. M. i dr., Pisma v ZhETF, 30:8 (1979), 523–527

[6] Keyes P. H., Phys. Lett. A, A67:2 (1978), 132–134 | DOI

[7] Keyes P. H., Shane I. R., Phys. Rev. Lett., 42:11 (1979), 722–725 | DOI

[8] Kasteleyen P. W., Fortuin C. M., J. Phys. Soc. Japan, Suppl., 26 (1969), 11–14

[9] Panasyuk G. Yu., Storonkin B. A., Tezisy dokladov VI Vsesoyuznoi konferentsii po metodam polucheniya i analiza vysokochistykh veschestv (Gorkii, mai 1981), Gorkii, 1981, 15

[10] Storonkin B. A., Smirnov A. V., Matematicheskie metody issledovaniya polimerov, Tezisy dokladov III Vsesoyuznogo soveschaniya (Puschino, iyun 1983), Puschino, 1983, 67–68

[11] Filjov V. M., Phys. Lett. A, 84A:8 (1981), 430–432

[12] Stephen M. J., Abrahams E., Straley I. P., Phys. Rev. B, B12:1 (1975), 256–262 | DOI | MR

[13] Stephen M. J., Phys. Rev. B, B12:3 (1975), 1015–1020 | DOI | MR

[14] Vigman P. B., Larkin A. I., Filev V. M., ZhETF, 68:5 (1975), 1883–1893