Temperature dependence of the correlation length in a one-dimensional Bose gas
Teoretičeskaâ i matematičeskaâ fizika, Tome 64 (1985) no. 1, pp. 92-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The asymptotic behavior of the current correlation function at large distances is investigated by means of the expansion constructed earlier by the authors and Izergin [1, 2, 3]. The correlation length is calculated for arbitrary coupling constant.
@article{TMF_1985_64_1_a9,
     author = {N. M. Bogolyubov and V. E. Korepin},
     title = {Temperature dependence of the correlation length in a~one-dimensional {Bose} gas},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {92--102},
     year = {1985},
     volume = {64},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_64_1_a9/}
}
TY  - JOUR
AU  - N. M. Bogolyubov
AU  - V. E. Korepin
TI  - Temperature dependence of the correlation length in a one-dimensional Bose gas
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 92
EP  - 102
VL  - 64
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_64_1_a9/
LA  - ru
ID  - TMF_1985_64_1_a9
ER  - 
%0 Journal Article
%A N. M. Bogolyubov
%A V. E. Korepin
%T Temperature dependence of the correlation length in a one-dimensional Bose gas
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 92-102
%V 64
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1985_64_1_a9/
%G ru
%F TMF_1985_64_1_a9
N. M. Bogolyubov; V. E. Korepin. Temperature dependence of the correlation length in a one-dimensional Bose gas. Teoretičeskaâ i matematičeskaâ fizika, Tome 64 (1985) no. 1, pp. 92-102. http://geodesic.mathdoc.fr/item/TMF_1985_64_1_a9/

[1] Bogolyubov N. M., Korepin V. E., TMF, 60:2 (1984), 262–269 | MR

[2] Izergin A. G., Korepin V. E., Commun. Math. Phys., 94 (1984), 67–92 | DOI | MR | Zbl

[3] Korepin V. E., Commun. Math. Phys., 94 (1984), 93–113 | DOI | MR | Zbl

[4] Berezin F. A., Pokhil G. P., Finkelberg V. M., Vestn. MGU, ser. matem.-mekh., 1964, no. 1, 21–28 | MR

[5] McGuire J. B., J. Math. Phys., 5:5 (1964), 622–629 | DOI | MR

[6] Sklyanin E. K., Faddeev L. D., DAN SSSR, 243:6 (1978), 1430–1433

[7] Sklyanin E. K., DAN SSSR, 244:6 (1978), 1337–1341 | MR

[8] Faddeev L. D., “Problema kvantovoi teorii polya”, Tr. V Mezhdunarodnogo soveschaniya po nelokalnym teoriyam polya, OIYaI, Dubna, 1979, 249–304

[9] Izergin A. G., Korepin V. E., Smirnov F. A., TMF, 48:3 (1981), 319–323 | MR

[10] Izergin A. G., Korepin V. E., Zap. nauchn. semin. LOMI, 120, 1982, 69–74 | MR

[11] Lieb E. H., Liniger W., Phys. Rev., 130:4 (1963), 1605–1624 | DOI | MR

[12] Yang C. N., Yang C. P., J. Math. Phys., 10:7 (1969), 1115–1122 | DOI | MR | Zbl

[13] Gaudin M., La fonction d'onde de Bethe pour les modèles exacts de la mécanique statistique, Commisariat à l'energie atomique, Paris, 1983 | MR | Zbl

[14] Popov V. N., Kontinualnye integraly v kvantovoi teorii polya i statisticheskoi fizike, Atomizdat, M., 1976 | MR

[15] Andrei N., Furuya K., Lowenstein J. H., Rev. Mod. Phys., 55:2 (1983), 331–402 | DOI | MR