Supersymmetric generalization of Todorov's equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 64 (1985) no. 1, pp. 61-68
Voir la notice de l'article provenant de la source Math-Net.Ru
A supersymmetric generalization of the quasipotential equation in the Markov–Yukawa
gauge is considered. Imposition of the supersymmetric Markov–Yukawa condition on
the two-particle Bethe–Salpeter amplitude yields conditions that give the transition to a one-time wave function. For this wave function, a supersymmetric three-dimensional
equation is written down. The Born term of the quasipotential is found for a selfinteracting
chiral superfield, and also for interaction with a massless ehiral superfield.
@article{TMF_1985_64_1_a6,
author = {R. P. Zaikov},
title = {Supersymmetric generalization of {Todorov's} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {61--68},
publisher = {mathdoc},
volume = {64},
number = {1},
year = {1985},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1985_64_1_a6/}
}
R. P. Zaikov. Supersymmetric generalization of Todorov's equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 64 (1985) no. 1, pp. 61-68. http://geodesic.mathdoc.fr/item/TMF_1985_64_1_a6/