Solutions of two-dimensional einstein equations parametrized by arbitrary functions and generated by the O(2, 1) $\sigma$ model
Teoretičeskaâ i matematičeskaâ fizika, Tome 64 (1985) no. 1, pp. 51-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Solutions, parametrized by arbitrary functions, of the two-dimensional Einstein equations are constructed by making a special choice of the determinant of the metric and using solutions of the attxiliary $O(2,1)$ $\sigma$ model. These solutions generalize ones considered earlier [1]. The construction is also applied to the Einstein–Maxwell equations and to the case when matter with equation of state $\varepsilon=p$ is present.
@article{TMF_1985_64_1_a5,
     author = {M. G. Tseitlin},
     title = {Solutions of two-dimensional einstein equations parametrized by arbitrary functions and generated by the {O(2,} 1) $\sigma$ model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {51--60},
     year = {1985},
     volume = {64},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_64_1_a5/}
}
TY  - JOUR
AU  - M. G. Tseitlin
TI  - Solutions of two-dimensional einstein equations parametrized by arbitrary functions and generated by the O(2, 1) $\sigma$ model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 51
EP  - 60
VL  - 64
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_64_1_a5/
LA  - ru
ID  - TMF_1985_64_1_a5
ER  - 
%0 Journal Article
%A M. G. Tseitlin
%T Solutions of two-dimensional einstein equations parametrized by arbitrary functions and generated by the O(2, 1) $\sigma$ model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 51-60
%V 64
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1985_64_1_a5/
%G ru
%F TMF_1985_64_1_a5
M. G. Tseitlin. Solutions of two-dimensional einstein equations parametrized by arbitrary functions and generated by the O(2, 1) $\sigma$ model. Teoretičeskaâ i matematičeskaâ fizika, Tome 64 (1985) no. 1, pp. 51-60. http://geodesic.mathdoc.fr/item/TMF_1985_64_1_a5/

[1] Tseitlin M. G., TMF, 57:2 (1983), 238–248 | MR

[2] Cosgrove C. M., J. Math. Phys., 21:9 (1980), 2417–2447 | DOI | MR

[3] Maison D., Phys. Rev. Lett., 41:8 (1978), 521–522 | DOI | MR

[4] Geroch R. J., J. Math. Phys., 13:3 (1973), 394–406 | DOI | MR

[5] Wu Y.-S., Ge M.-L., J. Math. Phys., 24:5 (1983), 1187–1192 | DOI | MR

[6] Wu Y.-S., Commun. Math. Phys., 90:4 (1983), 461–472 | DOI | MR

[7] Chelnokov V. G., Zeitlin M. G., Phys. Lett., 99A:4 (1983), 147–149 ; 102A:7 (1984), 276–278 ; J. Phys., 17A:11 (1984), 3283–3286 | DOI | MR | DOI | MR | MR | Zbl

[8] Lesnov A. N., Saveliev M. V., Commun. Math. Phys., 74:2 (1980), 111–118 | DOI | MR

[9] Papanicolaou N., J. Math. Phys., 20:10 (1979), 2069–2077 ; Chinea F. J., Phys. Rev., D24:4 (1981), 1053–1055 | DOI | MR | MR

[10] Gowdy R. H., J. Math. Phys., 16:2 (1975), 224–226 | DOI

[11] Kramer D., Neugebauer G., J. Phys., 14A:9 (1981), L333–L338

[12] Zeldovich Ya. B., ZhETF, 41:5 (1961), 1609–1620

[13] Belinskii V. A., ZhETF, 77:4 (1979), 1239–1254

[14] Papapetrou A., Ann. der Physik, 12:4 (1953), 309–315 | DOI | MR | Zbl

[15] Nakamura Y., J. Math. Phys., 24:3 (1983), 606–609 | DOI | MR | Zbl

[16] Linde A. D., UFN, 144:2 (1984), 177–219 | DOI | MR