On a~Kubo--Martin--Schwinger state of the sine-Gordon system
Teoretičeskaâ i matematičeskaâ fizika, Tome 64 (1985) no. 1, pp. 32-40
Voir la notice de l'article provenant de la source Math-Net.Ru
The sine-Gordon equation on a finite interval is considered as a Hamiltonian system.
A Gaussian measure is defined on an extension of the phase space. It is shown that
the partition function $Z$ employed in the statistical mechanics of the solitons is an
integral with respect to this measure. An algebra of observables is defined and on
it a state is constructed which satisfies the Kubo–Martin–Schwinger condition.
@article{TMF_1985_64_1_a3,
author = {N. V. Peskov},
title = {On {a~Kubo--Martin--Schwinger} state of the {sine-Gordon} system},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {32--40},
publisher = {mathdoc},
volume = {64},
number = {1},
year = {1985},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1985_64_1_a3/}
}
N. V. Peskov. On a~Kubo--Martin--Schwinger state of the sine-Gordon system. Teoretičeskaâ i matematičeskaâ fizika, Tome 64 (1985) no. 1, pp. 32-40. http://geodesic.mathdoc.fr/item/TMF_1985_64_1_a3/