Methods of weyl representation of the phase space and canonical transformations. II
Teoretičeskaâ i matematičeskaâ fizika, Tome 64 (1985) no. 1, pp. 17-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Nonlinear canonical transformations realized in the space of Weyl symbols of quantum operators are studied. The kernels of the transformations, the symbol of the intertwining operator of the group of inhomogeneous point transformations, and the group characters are constructed. The group of $\mathbf{PL}$ transformations, which is the free product of the group of point, $\mathbf{P}$ and linear, $\mathbf{P}$ transformations is considered. The simplest $\mathbf{PL}$ complexes relating problems with different potentials, in particular, containing a general Darboux transformation of the factorization method, are constructed. The kernel of an arbitrary element of the group $\mathbf{PL}$ is found.
@article{TMF_1985_64_1_a2,
     author = {V. G. Budanov},
     title = {Methods of weyl representation of the phase space and canonical {transformations.~II}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {17--31},
     year = {1985},
     volume = {64},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_64_1_a2/}
}
TY  - JOUR
AU  - V. G. Budanov
TI  - Methods of weyl representation of the phase space and canonical transformations. II
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 17
EP  - 31
VL  - 64
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_64_1_a2/
LA  - ru
ID  - TMF_1985_64_1_a2
ER  - 
%0 Journal Article
%A V. G. Budanov
%T Methods of weyl representation of the phase space and canonical transformations. II
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 17-31
%V 64
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1985_64_1_a2/
%G ru
%F TMF_1985_64_1_a2
V. G. Budanov. Methods of weyl representation of the phase space and canonical transformations. II. Teoretičeskaâ i matematičeskaâ fizika, Tome 64 (1985) no. 1, pp. 17-31. http://geodesic.mathdoc.fr/item/TMF_1985_64_1_a2/

[1] Budanov V. G., TMF, 61:3 (1984), 347–363 | MR

[2] De Witt B. S., Phys. Rev., 85:4 (1952), 653–661 ; 29:3 (1957), 377–397 | DOI | MR | Zbl | MR

[3] Gervais L., Jevicki A., Nucl. Phys., B110 (1976), 93–111 ; Khrustalev O. A., Rasumov A. V., Taranov A. Yu., Nucl. Phys., B172 (1980), 44–58 | DOI | MR | DOI | MR

[4] Greutz M., Musinich I. J., Tudron T. N., Phys. Rev., D19 (1979), 531–546

[5] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1971, 576 pp. | MR

[6] Budanov V. G., Gruppa neodnorodnykh tochechnykh preobrazovanii v kvantovoi mekhanike i ee obobscheniya, Preprint IFVE 85-13, IFVE, Serpukhov, 1985 | MR

[7] Berezin F. A., Shubin M. A., Uravnenie Shredingera, MGU, M., 1983, 390 pp. | MR

[8] Hietarinta J., Phys. Rev., D25 (1982), 2103–2117 | MR

[9] Kurosh A. G., Teoriya grupp, Nauka, M., 1967, 648 pp. | MR | Zbl

[10] Budanov V. G., Metod kanonicheskikh $\mathbf{P-L}$-preobrazovanii, Preprint IFVE 85-43, IFVE, Serpukhov, 1985 | MR

[11] Andrianov A. A., Borisov N. V., Ioffe M. V., TMF, 61:2 (1984), 183–198 | MR

[12] Lere Zh., Lagranzhev analiz i kvantovaya mekhanika, Mir, M., 1981, 260 pp. | MR

[13] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976, 296 pp. | MR

[14] Horvathy P. A., International Journal of Theoretical Physics, 18:4 (1979), 245–249 | DOI | MR