On a possibility of using generalized Okubo operators to take into account correlations in the Hubbard model with degeneracy
Teoretičeskaâ i matematičeskaâ fizika, Tome 64 (1985) no. 1, pp. 163-170 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The two-orbital Hubbard modet with degeneracy and isotropic hopping integrals is considered. A systematic method is proposed for taking into account iutra-atomic correlations of the electrons by means of generalized Okubo tensor operators. The spectrum of electron excitations in a very simple case is calculated as an example.
@article{TMF_1985_64_1_a13,
     author = {A. V. Vedyaev and V. A. Ivanov and V. E. Shilov},
     title = {On a~possibility of using generalized {Okubo} operators to take into account correlations in the {Hubbard} model with degeneracy},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {163--170},
     year = {1985},
     volume = {64},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_64_1_a13/}
}
TY  - JOUR
AU  - A. V. Vedyaev
AU  - V. A. Ivanov
AU  - V. E. Shilov
TI  - On a possibility of using generalized Okubo operators to take into account correlations in the Hubbard model with degeneracy
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 163
EP  - 170
VL  - 64
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_64_1_a13/
LA  - ru
ID  - TMF_1985_64_1_a13
ER  - 
%0 Journal Article
%A A. V. Vedyaev
%A V. A. Ivanov
%A V. E. Shilov
%T On a possibility of using generalized Okubo operators to take into account correlations in the Hubbard model with degeneracy
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 163-170
%V 64
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1985_64_1_a13/
%G ru
%F TMF_1985_64_1_a13
A. V. Vedyaev; V. A. Ivanov; V. E. Shilov. On a possibility of using generalized Okubo operators to take into account correlations in the Hubbard model with degeneracy. Teoretičeskaâ i matematičeskaâ fizika, Tome 64 (1985) no. 1, pp. 163-170. http://geodesic.mathdoc.fr/item/TMF_1985_64_1_a13/

[1] Shubin S. P., Vonsovskii S. V., Proc. Roy. Soc., A145:A854 (1934), 159–180 | DOI

[2] Hubbard J., Proc. Roy. Soc., A276 (1963), 238–257 ; A277 (1964), 237–259 | DOI | DOI

[3] Okubo S., Progr. Theor. Phys., 27:5 (1962), 949–966 | DOI | Zbl

[4] Oles A. M., Stolhoff G., Phys. Rev., B29:1 (1968), 314–327

[5] Makhviladze T. M., Shelepin L. A., ZhETF, 62:6 (1972), 2066–2073

[6] Scheunert M., Nahm W., Rittenberg V., J. Math. Phys., 17:9 (1976), 1626–1639 | DOI | MR | Zbl

[7] Ivanov V. A., Elementarnye vozbuzhdeniya v modeli Khabbarda, Dep. VINITI No 4094-79, MGU, M., 1979; Ведяев А. В., Иванов В. А., ТМФ, 47:3 (1981), 425–430

[8] Kuzmin E. V., Elektronnye i magnitnye svoistva perekhodnykh metallov i ikh soedinenii, Diss. uch. st. d.f.-m.n., Krasnoyarsk, 1979

[9] Zaitsev R. O., Diagrammnye metody v fizike tverdogo tela, Preprint IAE-3965/1, IAE, M., 1984

[10] Gaudin M., Nucl. Phys., 15 (1960), 89–91 | DOI | MR | Zbl

[11] Zaitsev R. O., ZhETF, 70:3 (1976), 1100–1111

[12] Haley S. B., Phys. Rev., B17:1 (1978), 337–346 | DOI

[13] Westwanski B., Pawlikowsky A., Phys. Lett., A43:2 (1973), 201–202 | DOI | MR