Hamiltonian of the phase separation border and phase transitions of the first kind. I
Teoretičeskaâ i matematičeskaâ fizika, Tome 64 (1985) no. 1, pp. 103-129 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Pirogov–Sinai theory of phase transitions of the first kind is generalized to the case when the “ground states” of the Hamiltonian of the model are interacting random fields (disordered phases). Border Hamiltonians and corresponding Ursell functions are introduced, and also conditions on them (cluster estimates) that ensure the existence of phase transitions, analyticity of the thermodynamic and correlation functions in the region of stability of given phases, analyticity of the strata of the phase diagram, and convergence of the constructed cluster expansions.
@article{TMF_1985_64_1_a10,
     author = {A. G. Basuev},
     title = {Hamiltonian of the phase separation border and phase transitions of the first {kind.~I}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {103--129},
     year = {1985},
     volume = {64},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_64_1_a10/}
}
TY  - JOUR
AU  - A. G. Basuev
TI  - Hamiltonian of the phase separation border and phase transitions of the first kind. I
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 103
EP  - 129
VL  - 64
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_64_1_a10/
LA  - ru
ID  - TMF_1985_64_1_a10
ER  - 
%0 Journal Article
%A A. G. Basuev
%T Hamiltonian of the phase separation border and phase transitions of the first kind. I
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 103-129
%V 64
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1985_64_1_a10/
%G ru
%F TMF_1985_64_1_a10
A. G. Basuev. Hamiltonian of the phase separation border and phase transitions of the first kind. I. Teoretičeskaâ i matematičeskaâ fizika, Tome 64 (1985) no. 1, pp. 103-129. http://geodesic.mathdoc.fr/item/TMF_1985_64_1_a10/

[1] Pirogov S. A., Sinai Ya. G., TMF, 25:3 (1975), 358–369 ; 26:1 (1976), 61–76 | MR | MR

[2] Gibbs Dzh. V., Termodinamika. Statisticheskaya mekhanika, Nauka, M., 1982, 584 pp. | MR

[3] Gertsik V. M., Izv. AN SSSR, ser. matem., 40:2 (1976), 448–462 | MR | Zbl

[4] Parsonidzh N., Steivli L., Besporyadok v kristallakh, t. 1, Mir, M., 1982, 436 pp.; т. 2, 336 с.

[5] Dobrushin R. L., Funkts. analiz i ego prilozh., 2:4 (1968), 31–43 | MR | Zbl

[6] Ryuel D., Statisticheskaya mekhanika. Strogie rezultaty, Mir, M., 1971, 367 pp.

[7] Sinai Ya. G., Teoriya fazovykh perekhodov, Nauka, M., 1980, 208 pp. | MR

[8] Basuev A. G., TMF, 57:3 (1983), 338–353 | MR

[9] Edvards R., Funktsionalnyi analiz, Mir, M., 1969, 1072 pp.

[10] Spitzer F., Ann. Prob., 3:3 (1975), 387–398 | DOI | MR | Zbl

[11] Malyshev V. A., UMN, 35:2 (1980), 3–53 | MR

[12] Minlos R. A., Sinai Ya. G., Tr. Mosk. matem. ob-va, 17, 1967, 213–242 ; 18, 1968, 113–178 | MR

[13] Basuev A. G., TMF, 58:1 (1984), 121–136 | MR

[14] Basuev A. G., TMF, 58:2 (1984), 261–278 | MR

[15] Duneau M., Souillard D., Commun. Math. Phys., 47 (1976), 155–166 | DOI | MR

[16] Pirogov S. A., Izv. AN SSSR, ser. matem., 39:6 (1975), 1404–1433 | MR

[17] Ganning R., Rossi Kh., Analiticheskie funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1969, 396 pp. | MR

[18] Shabat B. V., Vvedenie v kompleksnyi analiz, t. 2, Nauka, M., 1976, 400 pp. | MR

[19] Israel R., Commun. Math. Phys., 43 (1975), 59–65 | DOI | MR

[20] Ryuel D., TMF, 30:1 (1977), 40–47 | MR