Integrable models of quantum one-dimensional magnets with $O(n)$ and $Sp(2k)$ symmetry
Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 3, pp. 347-366 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new family of quantum one-dimensional magnets with $O(n)$ and $Sp(2k)$ symmetry is found. The eigenvalues of the corresponding transfer matrices on a finite lattice are calculated. A generalization of the matrix Bethe ansatz to systems with complicated pseudovacuum is proposed.
@article{TMF_1985_63_3_a3,
     author = {N. Yu. Reshetikhin},
     title = {Integrable models of quantum one-dimensional magnets with $O(n)$ and $Sp(2k)$ symmetry},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {347--366},
     year = {1985},
     volume = {63},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_63_3_a3/}
}
TY  - JOUR
AU  - N. Yu. Reshetikhin
TI  - Integrable models of quantum one-dimensional magnets with $O(n)$ and $Sp(2k)$ symmetry
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 347
EP  - 366
VL  - 63
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_63_3_a3/
LA  - ru
ID  - TMF_1985_63_3_a3
ER  - 
%0 Journal Article
%A N. Yu. Reshetikhin
%T Integrable models of quantum one-dimensional magnets with $O(n)$ and $Sp(2k)$ symmetry
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 347-366
%V 63
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1985_63_3_a3/
%G ru
%F TMF_1985_63_3_a3
N. Yu. Reshetikhin. Integrable models of quantum one-dimensional magnets with $O(n)$ and $Sp(2k)$ symmetry. Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 3, pp. 347-366. http://geodesic.mathdoc.fr/item/TMF_1985_63_3_a3/

[1] Faddeev L. D., Kvantovye vpolne integriruemye modeli teorii polya, Preprint LOMI R-2-79, LOMI, L., 1979

[2] Takhtadzhyan L. A., Faddeev L. D., UMN, 34:5 (1979), 13–63 | MR

[3] Izergin A. G., Korepin V. E., Fizika EChAYa, 13:3 (1982), 501–541 | MR

[4] Kulish P. P., Sklyanin E. K., Lect. Notes in Phys., 151, 1982, 61–119 | DOI | MR | Zbl

[5] Faddeev L. D., Integrable models in $1+1$ dimensional quantum field theory, Preprint S. Ph. T. 182/76, CEN-SACLAY, 1982 | MR

[6] Thacker H. B., Exact Integrability in Quantum Field Theory, FERMILAB-Conf.- 80/69-THY, August 1980

[7] Takhtajan L. A., Phys. Lett., 87A:9 (1982), 479–482 ; Babujian H. M., Nucl. Phys., B215 [FS7] (1983), 317–336 | DOI | MR | DOI | MR

[8] Kulish P. P., Reshetikhin N. Yu., Zap. nauch. semin. LOMI, 101, 1981, 101–110 | MR

[9] Sklyanin E. K., Funkts. analiz i ego prilozh., 16:4 (1982), 27–34 | MR | Zbl

[10] Kulish P. P., Reshetikhin N. Yu., Sklyanin E. K., Lett. Math. Phys., 5:5 (1981), 393–403 | DOI | MR | Zbl

[11] Kulish P. P., Reshetikhin N. Yu., Zap. nauch. semin. LOMI, 120, 1982, 92–121 | MR

[12] Kulish P. P., Reshetikhin N. Yu., J. Phys. A, 16 (1983), L591–L596 | DOI | MR | Zbl

[13] Drinfeld V. G., DAN SSSR, 273:3 (1983), 531–535 | MR | Zbl

[14] Reshetikhin N. Yu., Faddeev L. D., TMF, 56:3 (1983), 323–343 | MR

[15] Korepin V. E., DAN SSSR, 256:6 (1982), 1361–1364 | MR

[16] Reshetikhin N. Yu., TMF, 63:2 (1985), 197–207 | MR

[17] Tarasov V. O., Takhtadzhyan L. A., Faddeev L. D., TMF, 57:2 (1983), 163–181 | MR

[18] Zamolodchikov A. B., Zamolodchikov Al. B., Ann. Phys., 120:2 (1979), 253–291 | DOI | MR

[19] Schankar R., Witten E., Nucl. Phys., B141:4 (1978), 349–363 | DOI

[20] Berg B., Karowski M., Kurak V., Weisz P., Nucl. Phys., B134:1 (1978), 125–132 | DOI | MR | Zbl

[21] Gould M. D., J. Austral. Math. Soc., B20 (1978), 401–433 | DOI | MR | Zbl

[22] Takhtadzhyan L. A., Zap. nauch. semin. LOMI, 101, 1981, 158–183 | MR

[23] Reshetikhin N. Yu., ZhETF, 84:3 (1983), 1190–1201 | MR

[24] Takhtadzhyan L. A., Faddeev L. D., Zap. nauch. semin. LOMI, 109, 1981, 134–178 | MR | Zbl

[25] Kulish P. P., Reshetikhin N. Yu., ZhETF, 80:1 (1981), 214–228 | MR

[26] Sutherland B., Phys. Rev., B12:9 (1975), 3795–3805 | DOI

[27] Fordy A. P., Kulish P. P., Commun. Math. Phys., 89 (1983), 427–443 | DOI | MR | Zbl