Inverse problem of the potential scattering of charged particles at fixed orbital angular momentum and energy
Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 3, pp. 340-346 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Expressions are obtained for recovering the central interaction potential of charged particles in the case when the interaction leads to multiplication of the $S$ matrix defined in the complex plane of the Coulomb coupling constant by a rational $S$ function. A study is made of the influence of the sign of the potential on the position of the poles of the $S$ function and of the behavior of the phase shift.
@article{TMF_1985_63_3_a2,
     author = {M. N. Popushoi},
     title = {Inverse problem of the potential scattering of charged particles at fixed orbital angular momentum and energy},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {340--346},
     year = {1985},
     volume = {63},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_63_3_a2/}
}
TY  - JOUR
AU  - M. N. Popushoi
TI  - Inverse problem of the potential scattering of charged particles at fixed orbital angular momentum and energy
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 340
EP  - 346
VL  - 63
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_63_3_a2/
LA  - ru
ID  - TMF_1985_63_3_a2
ER  - 
%0 Journal Article
%A M. N. Popushoi
%T Inverse problem of the potential scattering of charged particles at fixed orbital angular momentum and energy
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 340-346
%V 63
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1985_63_3_a2/
%G ru
%F TMF_1985_63_3_a2
M. N. Popushoi. Inverse problem of the potential scattering of charged particles at fixed orbital angular momentum and energy. Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 3, pp. 340-346. http://geodesic.mathdoc.fr/item/TMF_1985_63_3_a2/

[1] Popushoi M. N., UFZh, 29:1 (1984), 24–29 | MR

[2] Theis R. W., Z. Naturforch., 11a:11 (1956), 889–891 | Zbl

[3] Malyarov V. V., Poplavskii I. V., Popushoi M. N., ZhETF, 68:2 (1975), 332–336

[4] Poplavskii I. V., Shiyan A. A., UFZh, 29:1 (1984), 5–11 | MR