Stochastic quantization of gauge-invariant and supersymmetric theories
Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 3, pp. 473-479
Cet article a éte moissonné depuis la source Math-Net.Ru
The method of stochastic quantization with naive Langevin equations, i.e. with classical action without additional terms, with zero-value initial conditions at $t=0$ gives the standard perturbation-theory quantum expectation values for gauge-invariant funetionals in gauge and $N=1$ supergauge theories.
@article{TMF_1985_63_3_a14,
author = {\'Ed. Sh. Egoryan},
title = {Stochastic quantization of gauge-invariant and supersymmetric theories},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {473--479},
year = {1985},
volume = {63},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1985_63_3_a14/}
}
Éd. Sh. Egoryan. Stochastic quantization of gauge-invariant and supersymmetric theories. Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 3, pp. 473-479. http://geodesic.mathdoc.fr/item/TMF_1985_63_3_a14/
[1] Parisi G., Wu Y., Scientia Sinica, 24 (1981), 483 | MR
[2] Zwanziger D., Nucl. Phys., B192 (1981), 259 | DOI | MR
[3] Baulieu L., Zwanziger D., Nucl. Phys., B193 (1981), 163 | DOI | MR
[4] Nakagoshi H. et al., Progr. theor. phys., 69 (1983), 1580 | DOI | MR
[5] Namaki M. et al., Progr. theor. phys., 1983, no. 1, 326
[6] Egorian E., Phys. Lett., B144 (1984), 73 | DOI | MR
[7] Breit J. D. et al., Nucl. Phys., B233 (1984), 61 | DOI
[8] Parisi G., Sourlas N., Nucl. Phys., B206 (1982), 321 | DOI | MR | Zbl
[9] Egorian E., Kalitsin S., Phys. Lett., B129 (1983), 320 | DOI
[10] Gozzi E., Phys. Rev., D28 (1983), 1922 | MR
[11] Cardy J. L., Phys. Lett., B125 (1983), 470 | DOI | MR
[12] Kizschner R., Phys. Lett., B139 (1984), 180 | DOI