Critical behavior of the ferromagnetic ising chain with interaction $J_{ij}=|i-j|^{-2}$
Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 3, pp. 465-472 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the one-dimensional ferromagnetic Isiag model with interaction that decreases inversely as the square of the distance between the lattice sites, high-temperature expansions of the susceptibility and specific heat are calculated to the eighth and ninth orders, respectively, in the reciprocal temperature. Analysis of the expansion of the susceptibility indicates that at the critical point its logarithm diverges in accordance with a power law with exponent $\nu=0,55\pm 0,03$. This estimate is close to the value $\nu=0.5$ obtained earlier by the renormalization-group method and is the first numerical confirmation of the predictions of the renormalization-group approach for systems with long-range interaction.
@article{TMF_1985_63_3_a13,
     author = {G. V. Matvienko},
     title = {Critical behavior of the ferromagnetic ising chain with interaction~$J_{ij}=|i-j|^{-2}$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {465--472},
     year = {1985},
     volume = {63},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_63_3_a13/}
}
TY  - JOUR
AU  - G. V. Matvienko
TI  - Critical behavior of the ferromagnetic ising chain with interaction $J_{ij}=|i-j|^{-2}$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 465
EP  - 472
VL  - 63
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_63_3_a13/
LA  - ru
ID  - TMF_1985_63_3_a13
ER  - 
%0 Journal Article
%A G. V. Matvienko
%T Critical behavior of the ferromagnetic ising chain with interaction $J_{ij}=|i-j|^{-2}$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 465-472
%V 63
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1985_63_3_a13/
%G ru
%F TMF_1985_63_3_a13
G. V. Matvienko. Critical behavior of the ferromagnetic ising chain with interaction $J_{ij}=|i-j|^{-2}$. Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 3, pp. 465-472. http://geodesic.mathdoc.fr/item/TMF_1985_63_3_a13/

[1] Kjaer K. H., Hilhorst H. J., J. Stat. Phys., 28:4 (1982), 621–632 | DOI | MR

[2] Cardy J. L., J. Phys., 14A:6 (1981), 1407–1415 | MR

[3] Anderson P. W., Yuval G., Hamann D. R., Phys. Rev., 1B:11 (1970), 4464–4473 | DOI

[4] Anderson P. W., Yuval G., J. Phys., 4C:5 (1971), 607–620

[5] Thouless D. J., Phys. Rev., 187:2 (1969), 732–733 | DOI

[6] Simon B., Sokal A. D., J. Stat. Phys., 25:4 (1981), 679–694 | DOI | MR

[7] Imbrie J. Z., Commun. Math. Phys., 85:4 (1982), 491–516 | DOI | MR

[8] Bhattacharjee J., Chakravarty S., Richardson J. L., Scalapino D. J., Phys. Rev., 24B:7 (1981), 3862–3865 | DOI | MR

[9] Tobochnick J., Chester G. V., Phys. Rev., 20B:9 (1979), 3761–3769 | DOI

[10] Fröhlich J., Spencer T., Commun. Math. Phys., 84:1 (1982), 87–102 | DOI | MR

[11] Kosterlitz J. M., Phys. Rev. Lett., 37:23 (1976), 1577–1580 | DOI

[12] Kosterlitz J. M., J. Phys., 7C:6 (1974), 1046–1060

[13] Camp W. J., Van Dyke J. P., J. Phys., 8C:3 (1975), 336–352

[14] Guttmann A. J., J. Phys., 11A:3 (1978), 545–553 | MR

[15] Ferer M., Velgakis M. J., Phys. Rev., 27B:1 (1983), 314–325 | DOI

[16] Dobson I. F., J. Math. Phys., 10:1 (1969), 40–45 | DOI | MR

[17] Rapaport D., Frankel N. E., Phys. Lett., 28A:6 (1969), 405–406

[18] Nagle J. F., Bonner J. C., J. Phys., 3C:2 (1970), 352–366

[19] Doman B. G. S., Phys. Stat. Sol., 103B:2 (1981), K169–K171 | DOI

[20] Fisher M., Priroda kriticheskogo sostoyaniya, Mir, M., 1968, 221 pp.

[21] Baker G. A., Adv. Theor. Phys., 1:1 (1965), 1–58

[22] Hunter D. L., Baker G. A.-, Phys. Rev., 7B:7 (1973), 3346–3376 | DOI

[23] Patashinskii A. Z., Pokrovskii V. L., Fluktuatsionnaya teoriya fazovykh perekhodov, 2-e izd., pererab., Nauka, M., 1982, 382 pp. | MR

[24] Ferer M., Aidinejad A. H., Velgakis M. J., J. Appl. Phys., 55:6 (1984), 2438–2440 | DOI

[25] Zaiman Dzh., Modeli besporyadka, Mir, M., 1982, 592 pp.

[26] Vasilev A. N., Radzhabov R. A., TMF, 21:1 (1974), 49–59

[27] Vasilev A. N., Radzhabov R. A., TMF, 23:3 (1975), 366–373 | MR

[28] Vasilev A. N., Funktsionalnye metody v kvantovoi teorii polya i statistike, LGU, L., 1976, 295 pp.

[29] Matvienko G. V., Favorskii I. A., FTT, 19:8 (1977), 1315–1321 | MR

[30] Braut R., Fazovye perekhody, Mir, M., 1967, 288 pp.

[31] Abramovits M., Stigan I. (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979, 832 pp. | MR

[32] Bogolyubov N. M., Vasilev A. N., Korzhenevskii A. L., Radzhabov R. A., Vestn. LGU, ser. fiz., khim., 1976, no. 4, 7–9

[33] Bogolyubov N. M., Vasilev A. N., Vestn. LGU, ser. fiz., khim., 1977, no. 22, 137–138