Symmetries of scaler fields. III. Two-dimensional integrable models
Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 3, pp. 323-332 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The symmetry of the relativistically invariant two-dimensional system $\varphi_{12}=f(\varphi)$ is investigated. Necessary and sufficient conditions for the system to belong to the Liouville type are obtained. Simple examples of Liouville systems are given. It is shown that to establish all integrable systems it is sufficient to assume that the elements of the Lie-Bäicklund algebra are polynomials in $\varphi_i$. Determining equations for the recursion operator of the system are obtained, and two examples of recursion operators are given. Some general arguments about methods of calculating conserved densities are presented.
@article{TMF_1985_63_3_a0,
     author = {A. G. Meshkov},
     title = {Symmetries of scaler fields. {III.~Two-dimensional} integrable models},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {323--332},
     year = {1985},
     volume = {63},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_63_3_a0/}
}
TY  - JOUR
AU  - A. G. Meshkov
TI  - Symmetries of scaler fields. III. Two-dimensional integrable models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 323
EP  - 332
VL  - 63
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_63_3_a0/
LA  - ru
ID  - TMF_1985_63_3_a0
ER  - 
%0 Journal Article
%A A. G. Meshkov
%T Symmetries of scaler fields. III. Two-dimensional integrable models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 323-332
%V 63
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1985_63_3_a0/
%G ru
%F TMF_1985_63_3_a0
A. G. Meshkov. Symmetries of scaler fields. III. Two-dimensional integrable models. Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 3, pp. 323-332. http://geodesic.mathdoc.fr/item/TMF_1985_63_3_a0/

[1] Meshkov A. G., TMF, 55:2 (1983), 197–204 | MR | Zbl

[2] Meshkov A. G., TMF, 57:3 (1983), 382–391 | MR | Zbl

[3] Zhiber A. V., Ibragimov N. Kh., Shabat A. B., DAN SSSR, 249:1 (1979), 26–29 | MR | Zbl

[4] Leznov A. N., Smirnov V. G., Shabat A. B., TMF, 51:1 (1982), 10–21 | MR | Zbl

[5] Leznov A. N., TMF, 42:3 (1980), 343–349 | MR | Zbl

[6] Leznov A. N., Saveliev M. V., Commun. Math. Phys., 74 (1980), 111–118 | DOI | MR | Zbl

[7] Manin Yu. I., “Algebraicheskie aspekty nelineinykh differentsialnykh uravnenii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 11, VINITI, M., 1978, 5–152 | MR

[8] Mikhailov A. V., Pisma v ZhETF, 30:7 (1979), 443–448

[9] Fuchssteiner B., Nonlinear Anal. Theor. Meth. Appl., 3:6 (1979), 849–862 ; Progr. Theor. Phys., 65:3 (1981), 861–876 | DOI | MR | Zbl | DOI | MR | Zbl

[10] Meshkov A. G., Simmetrii i zakony sokhraneniya evolyutsionnykh uravnenii, Deponirovano v VINITI, No 1511-85 Dep., VINITI, M., 1985