Exactly solvable $d$-dimensional model of a structural phase transition
Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 2, pp. 270-279 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The approximating Hamiltonian method is used to show that the lattice model $g\varphi^4$ with coupling constant $g=\lambda/N$ has an exact solution. The thermodynamics of the phase transition in this model is investigated.
@article{TMF_1985_63_2_a9,
     author = {N. M. Plakida and N. S. Tonchev},
     title = {Exactly solvable $d$-dimensional model of a~structural phase transition},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {270--279},
     year = {1985},
     volume = {63},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_63_2_a9/}
}
TY  - JOUR
AU  - N. M. Plakida
AU  - N. S. Tonchev
TI  - Exactly solvable $d$-dimensional model of a structural phase transition
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 270
EP  - 279
VL  - 63
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_63_2_a9/
LA  - ru
ID  - TMF_1985_63_2_a9
ER  - 
%0 Journal Article
%A N. M. Plakida
%A N. S. Tonchev
%T Exactly solvable $d$-dimensional model of a structural phase transition
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 270-279
%V 63
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1985_63_2_a9/
%G ru
%F TMF_1985_63_2_a9
N. M. Plakida; N. S. Tonchev. Exactly solvable $d$-dimensional model of a structural phase transition. Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 2, pp. 270-279. http://geodesic.mathdoc.fr/item/TMF_1985_63_2_a9/

[1] Schneider T., Stoll E., Beck H., Physica, 79A (1975), 201–216 | DOI

[2] Sarbach S., Schneider T., Z. Physik, B20 (1975), 399–403 | DOI

[3] Schäfer R., Beck H., Thomas H., Z. Physik, B30 (1978), 223–229 | DOI

[4] Joyce C. S., “Critical Properties of Spherical Model”, Phase Transition and Critical Phenomena, vol. 2, eds. Domb C., Green M. S., Acad. Press, N. Y., 1972, 375–442 | MR

[5] Bogolyubov N. N. (ml.), Metod issledovaniya modelnykh gamiltonianov, Nauka, M., 1974 ; Боголюбов Н. Н. (мл.), Бранков Й. Г., Загребнов В. А., Курбатов А. М., Тончев Н. С., Метод аппроксимирующего гамильтониана в статистической физике, БАН, София, 1981 | MR | Zbl

[6] Montroll E. W., Weiss G. H., J. of Math. Phys., 6:2 (1975), 167–181 | DOI | MR

[7] Griffits R. B., Phase Transition and Critical Phenomena, vol. 1, eds. Domb C., Green M. S., Academic Press, N. Y., 1972, 35 | MR

[8] Riedel E. K., Wegner F. J., Phys. Rev. Lett., 29 (1972), 349 | DOI

[9] Aharony A., Phase Transitions and Critical Phenomena, vol. 6, eds. Domb C., Green M. S., Academic Press, N. Y., 1976, 357 | MR