Exactly solvable $d$-dimensional model of a~structural phase transition
Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 2, pp. 270-279
Voir la notice de l'article provenant de la source Math-Net.Ru
The approximating Hamiltonian method is used to show that the lattice model $g\varphi^4$
with coupling constant $g=\lambda/N$ has an exact solution. The thermodynamics of the
phase transition in this model is investigated.
@article{TMF_1985_63_2_a9,
author = {N. M. Plakida and N. S. Tonchev},
title = {Exactly solvable $d$-dimensional model of a~structural phase transition},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {270--279},
publisher = {mathdoc},
volume = {63},
number = {2},
year = {1985},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1985_63_2_a9/}
}
TY - JOUR AU - N. M. Plakida AU - N. S. Tonchev TI - Exactly solvable $d$-dimensional model of a~structural phase transition JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1985 SP - 270 EP - 279 VL - 63 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1985_63_2_a9/ LA - ru ID - TMF_1985_63_2_a9 ER -
N. M. Plakida; N. S. Tonchev. Exactly solvable $d$-dimensional model of a~structural phase transition. Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 2, pp. 270-279. http://geodesic.mathdoc.fr/item/TMF_1985_63_2_a9/