Quantum field scattering theory for the nonlinear Schrödinger equation with repulsive coupling
Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 2, pp. 244-253
Cet article a éte moissonné depuis la source Math-Net.Ru
Nonstationary quantum field scattering theory is constructed for the nonlinear Schrödinger equation with repulsion. Local fields are introduced through the quantum Gel'fand–Levitan–Marehenko equations; the equivalence of the field problem to a set of $N$-particle quantum-mechanical problems with two-body $\delta$-functional potential (coordinate Bethe ansatz) is not used.
@article{TMF_1985_63_2_a7,
author = {I. M. Khamitov},
title = {Quantum field scattering theory for the nonlinear {Schr\"odinger} equation with repulsive coupling},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {244--253},
year = {1985},
volume = {63},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1985_63_2_a7/}
}
TY - JOUR AU - I. M. Khamitov TI - Quantum field scattering theory for the nonlinear Schrödinger equation with repulsive coupling JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1985 SP - 244 EP - 253 VL - 63 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1985_63_2_a7/ LA - ru ID - TMF_1985_63_2_a7 ER -
I. M. Khamitov. Quantum field scattering theory for the nonlinear Schrödinger equation with repulsive coupling. Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 2, pp. 244-253. http://geodesic.mathdoc.fr/item/TMF_1985_63_2_a7/
[1] Yang C. N., Phys. Rev., 168:5 (1968), 1920–1923 | DOI
[2] Grosse H., Phys. Lett., 86B:3–4 (1979), 267–271 | DOI | MR
[3] Berezin F. A., Pokhil G. P., Finkelberg V. M., Vestn. MGU, ser. Matematika, Mekhanika, 1964, no. 1, 21–28 | MR
[4] McGuire J. B., J. Math. Phys., 5:5 (1964), 622–636 | DOI | MR | Zbl
[5] Sklyanin E. K., Zap. nauchn. semin. LOMI, 95, 1980, 55–128 | MR | Zbl
[6] Creamer D. B., Thacker H. B., Wilkinson D., Phys. Rev., D21:6 (1980), 1523–1528 | MR
[7] Faddeev L. D., “Kvantovye vpolne integriruemye modeli teorii polya”, Problemy kvantovoi teorii polya, Trudy V Mezhdunarodnogo soveschaniya po nelokalnym teoriyam polya (Alushta, 1979), OIYaI, Dubna, 1979, 249–299