Quantum field scattering theory for the nonlinear Schrödinger equation with repulsive coupling
Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 2, pp. 244-253 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Nonstationary quantum field scattering theory is constructed for the nonlinear Schrödinger equation with repulsion. Local fields are introduced through the quantum Gel'fand–Levitan–Marehenko equations; the equivalence of the field problem to a set of $N$-particle quantum-mechanical problems with two-body $\delta$-functional potential (coordinate Bethe ansatz) is not used.
@article{TMF_1985_63_2_a7,
     author = {I. M. Khamitov},
     title = {Quantum field scattering theory for the nonlinear {Schr\"odinger} equation with repulsive coupling},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {244--253},
     year = {1985},
     volume = {63},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_63_2_a7/}
}
TY  - JOUR
AU  - I. M. Khamitov
TI  - Quantum field scattering theory for the nonlinear Schrödinger equation with repulsive coupling
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 244
EP  - 253
VL  - 63
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_63_2_a7/
LA  - ru
ID  - TMF_1985_63_2_a7
ER  - 
%0 Journal Article
%A I. M. Khamitov
%T Quantum field scattering theory for the nonlinear Schrödinger equation with repulsive coupling
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 244-253
%V 63
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1985_63_2_a7/
%G ru
%F TMF_1985_63_2_a7
I. M. Khamitov. Quantum field scattering theory for the nonlinear Schrödinger equation with repulsive coupling. Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 2, pp. 244-253. http://geodesic.mathdoc.fr/item/TMF_1985_63_2_a7/

[1] Yang C. N., Phys. Rev., 168:5 (1968), 1920–1923 | DOI

[2] Grosse H., Phys. Lett., 86B:3–4 (1979), 267–271 | DOI | MR

[3] Berezin F. A., Pokhil G. P., Finkelberg V. M., Vestn. MGU, ser. Matematika, Mekhanika, 1964, no. 1, 21–28 | MR

[4] McGuire J. B., J. Math. Phys., 5:5 (1964), 622–636 | DOI | MR | Zbl

[5] Sklyanin E. K., Zap. nauchn. semin. LOMI, 95, 1980, 55–128 | MR | Zbl

[6] Creamer D. B., Thacker H. B., Wilkinson D., Phys. Rev., D21:6 (1980), 1523–1528 | MR

[7] Faddeev L. D., “Kvantovye vpolne integriruemye modeli teorii polya”, Problemy kvantovoi teorii polya, Trudy V Mezhdunarodnogo soveschaniya po nelokalnym teoriyam polya (Alushta, 1979), OIYaI, Dubna, 1979, 249–299