Feynman rules for superfields in $N=1$ and $N=2$ supersymmetric Yang–Mills theories on the light cone
Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 2, pp. 219-229 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers $N=1$ supersymmetric Yang–Mills theories in dimensions $d=4$ and $d=6$ on the light cone. The $N=2$ theory in $d=4$ is obtained by dimensional reduction. The results are represented in the superfield formulation of Mandelstam. Feynman rules for the superfields are obtained. The well-known fact is confirmed that the $N=2$ theory in $d=4$ has only single-loop divergences in the gauge considered.
@article{TMF_1985_63_2_a5,
     author = {S. V. Ketov},
     title = {Feynman rules for superfields in $N=1$ and $N=2$ supersymmetric {Yang{\textendash}Mills} theories on the light cone},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {219--229},
     year = {1985},
     volume = {63},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_63_2_a5/}
}
TY  - JOUR
AU  - S. V. Ketov
TI  - Feynman rules for superfields in $N=1$ and $N=2$ supersymmetric Yang–Mills theories on the light cone
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 219
EP  - 229
VL  - 63
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_63_2_a5/
LA  - ru
ID  - TMF_1985_63_2_a5
ER  - 
%0 Journal Article
%A S. V. Ketov
%T Feynman rules for superfields in $N=1$ and $N=2$ supersymmetric Yang–Mills theories on the light cone
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 219-229
%V 63
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1985_63_2_a5/
%G ru
%F TMF_1985_63_2_a5
S. V. Ketov. Feynman rules for superfields in $N=1$ and $N=2$ supersymmetric Yang–Mills theories on the light cone. Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 2, pp. 219-229. http://geodesic.mathdoc.fr/item/TMF_1985_63_2_a5/

[1] Salam A., Strathdee J., Fortschr. Phys., 26 (1978), 57–142 | DOI | MR

[2] Grisaru M. T., Siegel W., Roček M., Nucl. Phys., B159:3 (1979), 429–450 | DOI | MR

[3] Avdeev L. V., Tarasov O. V., Vladimirov A. A., Phys. Lett., 96B:1 (1980), 94–96 | DOI

[4] Mandelstam St., Nucl. Phys., B213:1 (1983), 149–168 | DOI | MR

[5] Brink L., Lindgren O., Nilsson B. E. W., Phys. Lett., 123B:5 (1983), 323–328 | DOI

[6] Howe P. S., Stelle K. S., Townsend P. K., Nucl. Phys., B214:3 (1983), 519–531 | DOI | MR

[7] Brink L., Schwarz J. H., Scherk J., Nucl. Phys., B121:1 (1977), 77–92 | DOI | MR

[8] Gliozzi F., Scherk J., Olive D., Nucl. Phys., B122:2 (1977), 253–290 | DOI | MR

[9] Green M. B., Schwarz J. H., Nucl. Phys., B181:3 (1981), 502–530 | DOI

[10] Green M. B., Schwarz J. H., Nucl. Phys., B198:2 (1982), 252–268 | DOI

[11] Brink L., Lindgren O., Nilsson B. E. W., Nucl. Phys., B212:2–3 (1983), 401–412 | DOI | MR

[12] Namazie M. A., Salam A., Strathdee J., Finiteness of Broken $N=4$ Super-Yang–Mills Theory, Preprint 1C/82/230, Trieste, Italy, November 1982

[13] Taylor J. G., $N=1$ and $N=2$ supersymmetric Yang–Mills Theories in the Light-Cone Gauge, King's College Preprint, London, October 1982 | MR

[14] Taylor J. G., Found. of Phys., 13:3 (1983), 395–407 | DOI | MR

[15] Hassoun Y., Restuccia A., Taylor J. G., Phys. Lett., B124:3–4 (1983), 197–200 | DOI

[16] Avdeev L. V., Tarasov O. V., Phys. Lett., 112B:4–5 (1982), 356–358 | DOI

[17] Grisaru M., Roček M., Siegel W., Phys. Rev. Lett., 45 (1980), 1063–1067 | DOI

[18] Howe P., Stelle K., Townsend P., Nucl. Phys., B236:1 (1984), 125–166 | DOI | MR