$R^*$ operation in the minimal subtraction scheme
Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 2, pp. 208-218 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The formalism of the $R^*$ operation [1] is developed; it generalizes the $R$ operation and eliminates both ultraviolet and infrared divergences. By explicit formulation of the concept of an infrared counterterm it is shown that the calculation of an arbitrary $(\Re+1)$-loop ultraviolet or infrared eounterterm in the minimal subtraction scheme can be reduced to the finding of the divergent and finite parts of certain massless Feynman integrals that depend only on a single external momentum with number of loops not exceeding $\Re$.
@article{TMF_1985_63_2_a4,
     author = {V. A. Smirnov and K. G. Chetyrkin},
     title = {$R^*$ operation in the minimal subtraction scheme},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {208--218},
     year = {1985},
     volume = {63},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_63_2_a4/}
}
TY  - JOUR
AU  - V. A. Smirnov
AU  - K. G. Chetyrkin
TI  - $R^*$ operation in the minimal subtraction scheme
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 208
EP  - 218
VL  - 63
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_63_2_a4/
LA  - ru
ID  - TMF_1985_63_2_a4
ER  - 
%0 Journal Article
%A V. A. Smirnov
%A K. G. Chetyrkin
%T $R^*$ operation in the minimal subtraction scheme
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 208-218
%V 63
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1985_63_2_a4/
%G ru
%F TMF_1985_63_2_a4
V. A. Smirnov; K. G. Chetyrkin. $R^*$ operation in the minimal subtraction scheme. Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 2, pp. 208-218. http://geodesic.mathdoc.fr/item/TMF_1985_63_2_a4/

[1] Chetyrkin K. G., Tkachov F. V., Phys. Lett., 114B:5 (1982), 340–344 | DOI

[2] Bogoliubov N. N., Parasiuk O. S., Acta Math., 97 (1957), 227 | DOI | MR

[3] Tkachov F. V., Phys. Lett., 124B:3–4 (1983), 212–216 | DOI

[4] Chetyrkin K. G., Phys. Lett., 126B:5 (1983), 371–375 | DOI

[5] Chetyrkin K. G., Gorishny S. G., Larin S. A., Tkachov F. V., Phys. Lett., 132B:4–6 (1983), 351–354 | DOI

[6] Tkachov F. V., Phys. Lett., 100B:1 (1981), 65 | DOI | MR

[7] Nakanishi N., Graph Theory and Feynman Integrals, Gordon and Breach, New York, 1971 | Zbl

[8] Bergère M. C., David F., J. Math. Phys., 20:6 (1979), 1244–1255 | DOI | MR

[9] Smirnov V. A., TMF, 44:3 (1980), 307–320 ; 46:2 (1981), 199–212 | MR | MR

[10] Smirnov V. A., TMF, 59:3 (1984), 373–387 | MR

[11] Anikin S. A., Zavyalov O. I., Karchev N. I., TMF, 44:3 (1980), 291–306 | MR

[12] 't Hooft G., Veltman M., Nucl. Phys., B44 (1972), 189 | DOI

[13] Speer E. R., J. Math. Phys., 15 (1974), 1–16 ; Breitenlohner P., Maison D., Commun. Math. Phys., 52 (1977), 11–75 | DOI | MR | DOI | MR

[14] Smirnov V. A., Chetyrkin K. G., TMF, 56:2 (1983), 206–215 | MR

[15] De Calan C., Malbouisson A. P. C., Commun. Math. Phys., 90 (1983), 413–416 | DOI | MR

[16] 't Hooft G., Nucl. Phys., B61 (1973), 455 | DOI

[17] Collins J. C., Nucl. Phys., B92:3 (1975), 477–506 | DOI

[18] Chetyrkin K. G., Kataev A. L., Tkachov F. V., Nucl. Phys., B174 (1980), 345 | DOI | MR

[19] Caswell W. E., Kennedy A. D., Phys. Rev., D25:2 (1982), 392–408 | MR | Zbl

[20] Collins J. C., Nucl. Phys., B80:2 (1974), 341–348 | DOI

[21] Parisi G., Nucl. Phys., B150:1 (1979), 163–172 | DOI | MR

[22] Vladimirov A. A., TMF, 43:2 (1980), 210–217 | MR

[23] Vladimirov A. A., Kazakov D. I., Tarasov O. V., ZhETF, 77 (1979), 1035 | MR