Hamiltonian structures for integrable field theory models. II.~Models with $O(n)$ and $Sp(2k)$ symmetry on a~one-dimensional lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 2, pp. 197-207
Voir la notice de l'article provenant de la source Math-Net.Ru
A new family of classical integrable systems with $O(n)$ and $Sp(2k)$ symmetry is found.
It is shown that these systems can be regarded as lattice analogs of models of the nonlinear
Schrödinger equation on symmetric spaces. An example of a $O(n)$-invariant
classical discrete magnet with local Hamiltonian is constructed.
@article{TMF_1985_63_2_a3,
author = {N. Yu. Reshetikhin},
title = {Hamiltonian structures for integrable field theory models. {II.~Models} with $O(n)$ and $Sp(2k)$ symmetry on a~one-dimensional lattice},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {197--207},
publisher = {mathdoc},
volume = {63},
number = {2},
year = {1985},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1985_63_2_a3/}
}
TY - JOUR AU - N. Yu. Reshetikhin TI - Hamiltonian structures for integrable field theory models. II.~Models with $O(n)$ and $Sp(2k)$ symmetry on a~one-dimensional lattice JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1985 SP - 197 EP - 207 VL - 63 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1985_63_2_a3/ LA - ru ID - TMF_1985_63_2_a3 ER -
%0 Journal Article %A N. Yu. Reshetikhin %T Hamiltonian structures for integrable field theory models. II.~Models with $O(n)$ and $Sp(2k)$ symmetry on a~one-dimensional lattice %J Teoretičeskaâ i matematičeskaâ fizika %D 1985 %P 197-207 %V 63 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1985_63_2_a3/ %G ru %F TMF_1985_63_2_a3
N. Yu. Reshetikhin. Hamiltonian structures for integrable field theory models. II.~Models with $O(n)$ and $Sp(2k)$ symmetry on a~one-dimensional lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 2, pp. 197-207. http://geodesic.mathdoc.fr/item/TMF_1985_63_2_a3/