Irreducible monodromy matrices for the $R$ matrix of the $XXZ$ model and local lattice quantum Hamiltonians
Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 2, pp. 175-196 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Monodromy matrices with vacuum and finite-dimensional single-particle subspace are considered for the $R$ matrices of the $XXX$ and $XXZ$ models. A natural class of monodromy matrices – irreducible monodromy matrices – is described; for these matrices, the propositions proposed earlier as natural hypotheses are valid. The existence of local Hamiltonians is proved for quantum integrable models on a lattice with irreducible local monodromy matrices.
@article{TMF_1985_63_2_a2,
     author = {V. O. Tarasov},
     title = {Irreducible monodromy matrices for the $R$ matrix of the $XXZ$ model and local lattice quantum {Hamiltonians}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {175--196},
     year = {1985},
     volume = {63},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_63_2_a2/}
}
TY  - JOUR
AU  - V. O. Tarasov
TI  - Irreducible monodromy matrices for the $R$ matrix of the $XXZ$ model and local lattice quantum Hamiltonians
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 175
EP  - 196
VL  - 63
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_63_2_a2/
LA  - ru
ID  - TMF_1985_63_2_a2
ER  - 
%0 Journal Article
%A V. O. Tarasov
%T Irreducible monodromy matrices for the $R$ matrix of the $XXZ$ model and local lattice quantum Hamiltonians
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 175-196
%V 63
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1985_63_2_a2/
%G ru
%F TMF_1985_63_2_a2
V. O. Tarasov. Irreducible monodromy matrices for the $R$ matrix of the $XXZ$ model and local lattice quantum Hamiltonians. Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 2, pp. 175-196. http://geodesic.mathdoc.fr/item/TMF_1985_63_2_a2/

[1] Faddeev L. D., Soviet Sci. Rev., Math. Phys. C, 1 (1981), 107–155

[2] Takhtadzhyan L. A., Faddeev L. D., UMN, 34:5 (1979), 13–63 | MR

[3] Kulish P. P., Sklyanin E. K., Lect. Notes in Phys., 151, 1981, 61–110 | DOI | MR

[4] Izergin A. G., Korepin V. E., Nucl. Phys. B, 205, FS5 (1982), 401–413 | DOI | MR

[5] Korepin V. E., DAN SSSR, 265:6 (1982), 1361–1364 | MR

[6] Tarasov V. O., TMF, 61:2 (1984), 163–173 | MR

[7] Izergin A. G., Korepin V. E., Zap. nauchn. semin. LOMI, 131, 1983, 80–87 | MR

[8] Tarasov V. O., Takhtadzhyan L. A., Faddeev L. D., TMF, 57:2 (1983), 163–181 | MR

[9] Izergin A. G., Korepin V. E., Zap. nauchn. semin. LOMI, 133, 1984, 92–112 | MR | Zbl

[10] Smirnov F. A., TMF, 53:3 (1982), 323–334 | MR