Functional integral for systems with constraints that depend explicitly on the time
Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 1, pp. 88-96
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that the rules for constructing the functional integral in phase space for
systems with singular Lagrangiaus proposed by Faddeev also remain valid when gauge
conditions that depend explicitly on the time are used. Such conditions must be
considered, for example, in the case when the canonical Hamiltonian in the theory is
identically equal to zero (relativistic point particle, relativistic string, etc.). The
functional integral is first expressed in terms of the physical canonical variables,
for the separation of which a canonical transformation determined by the gauge
conditions is used. In the case of nonstationary gauge conditions, the canonical
transformation depends explicitly on the time. This leads to an additional (compared
with the case considered by Faddeev) term in the Hamiltonian that determines the
dynamics on the physical submanifold of the phase space.
@article{TMF_1985_63_1_a6,
author = {B. M. Barbashov and V. V. Nesterenko and A. M. Chervyakov},
title = {Functional integral for systems with constraints that depend explicitly on the time},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {88--96},
publisher = {mathdoc},
volume = {63},
number = {1},
year = {1985},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1985_63_1_a6/}
}
TY - JOUR AU - B. M. Barbashov AU - V. V. Nesterenko AU - A. M. Chervyakov TI - Functional integral for systems with constraints that depend explicitly on the time JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1985 SP - 88 EP - 96 VL - 63 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1985_63_1_a6/ LA - ru ID - TMF_1985_63_1_a6 ER -
%0 Journal Article %A B. M. Barbashov %A V. V. Nesterenko %A A. M. Chervyakov %T Functional integral for systems with constraints that depend explicitly on the time %J Teoretičeskaâ i matematičeskaâ fizika %D 1985 %P 88-96 %V 63 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1985_63_1_a6/ %G ru %F TMF_1985_63_1_a6
B. M. Barbashov; V. V. Nesterenko; A. M. Chervyakov. Functional integral for systems with constraints that depend explicitly on the time. Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 1, pp. 88-96. http://geodesic.mathdoc.fr/item/TMF_1985_63_1_a6/