One-dimensional model of three-particle resonances
Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 1, pp. 78-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The theory of extensions is used to construct a nontrivial $S$ matrix for a system of three one-dimensional particles in the boundary condition model. The analytic structure of the constructed S matrix on the energy shell is investigated.
@article{TMF_1985_63_1_a5,
     author = {Yu. A. Kuperin and K. A. Makarov and B. S. Pavlov},
     title = {One-dimensional model of three-particle resonances},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {78--87},
     year = {1985},
     volume = {63},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_63_1_a5/}
}
TY  - JOUR
AU  - Yu. A. Kuperin
AU  - K. A. Makarov
AU  - B. S. Pavlov
TI  - One-dimensional model of three-particle resonances
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 78
EP  - 87
VL  - 63
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_63_1_a5/
LA  - ru
ID  - TMF_1985_63_1_a5
ER  - 
%0 Journal Article
%A Yu. A. Kuperin
%A K. A. Makarov
%A B. S. Pavlov
%T One-dimensional model of three-particle resonances
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 78-87
%V 63
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1985_63_1_a5/
%G ru
%F TMF_1985_63_1_a5
Yu. A. Kuperin; K. A. Makarov; B. S. Pavlov. One-dimensional model of three-particle resonances. Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 1, pp. 78-87. http://geodesic.mathdoc.fr/item/TMF_1985_63_1_a5/

[1] Berezin F. A., Pokhil G. P., Finkelberg V. M., Vestn. MGU, ser. matem., 1964, no. 1, 21–27 | MR

[2] Mc Guire J. B., Hurst C. A., J. Math. Phys., 13:10 (1972), 1595–1607 | DOI

[3] Lipszyc K., J. Math. Phys., 15:1 (1974), 133–138 ; 21:5 (1980), 1092–1102 | DOI | MR | DOI | MR

[4] Buslaev V. S., Merkurev S. P., Salikov S. P., Problemy matematicheskoi fiziki, no. 9, 1979, 14–30 | MR | Zbl

[5] Pavlov B. S., TMF, 59:3 (1984), 345–353 | MR