Method of dimensional regularization for scalar and vector fields in homogeneous isotropic spaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 1, pp. 64-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A consistent analytic continuation of the relations of the theory of quantized scalar (with arbitrary coupling) and vector fields in isotropic metrics into the complex plane with respect to the number of space-time dimensions is constructed. Dimensionally regularized values are obtained for the quantities subtracted from the vacuum energy-momentum tensor when the divergences are eliminated, and their geometrical structure is established. All the infinite subtractions are interpreted in terms of renormalizations.
@article{TMF_1985_63_1_a4,
     author = {S. G. Mamaev and V. M. Mostepanenko and V. A. Sheluto},
     title = {Method of dimensional regularization for scalar and vector fields in homogeneous isotropic spaces},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {64--77},
     year = {1985},
     volume = {63},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_63_1_a4/}
}
TY  - JOUR
AU  - S. G. Mamaev
AU  - V. M. Mostepanenko
AU  - V. A. Sheluto
TI  - Method of dimensional regularization for scalar and vector fields in homogeneous isotropic spaces
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 64
EP  - 77
VL  - 63
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_63_1_a4/
LA  - ru
ID  - TMF_1985_63_1_a4
ER  - 
%0 Journal Article
%A S. G. Mamaev
%A V. M. Mostepanenko
%A V. A. Sheluto
%T Method of dimensional regularization for scalar and vector fields in homogeneous isotropic spaces
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 64-77
%V 63
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1985_63_1_a4/
%G ru
%F TMF_1985_63_1_a4
S. G. Mamaev; V. M. Mostepanenko; V. A. Sheluto. Method of dimensional regularization for scalar and vector fields in homogeneous isotropic spaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 1, pp. 64-77. http://geodesic.mathdoc.fr/item/TMF_1985_63_1_a4/

[1] Grib A. A., Mamaev S. G., Mostepanenko V. M., Kvantovye effekty v intensivnykh vneshnikh polyakh, Atomizdat, M., 1980

[2] Birrel I., Devis P., Kvantovannye polya v iskrivlennom prostranstve-vremeni, Mir, M., 1984 | MR

[3] Zeldovich Ya. B., Starobinskii A. A., ZhETF, 61:6 (1971), 2161–2175

[4] Parker L., Fulling S. A., Phys. Rev. D, 9:2 (1974), 341–354 | DOI

[5] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1973 | MR | Zbl

[6] Mamaev S. G., Mostepanenko V. M., YaF, 28:6 (1978), 1640–1653

[7] 'tHooft G., Veltman M., Nucl. Phys., B44:1 (1972), 189–213 | DOI | MR

[8] Brown L. S., Cassidy J. P., Phys. Rev. D, 15:10 (1977), 2810–2829 | DOI

[9] Duncan A., Phys. Rev. D, 17:4 (1978), 964–971 | DOI | MR

[10] Bunch T. S., J. Phys. A, 12:4 (1980), 517–531 | DOI | MR

[11] Bunch T. S., J. Phys. A, 13:4 (1980), 1297–1310 | DOI | MR

[12] Mamayev S. G., Mostepanenko V. M., Phys. Lett., 93A:8 (1983), 391–393 | DOI

[13] Mamaev S. G., Mostepanenko V. M., Pisma v astron. zh., 9:3 (1983), 131–134 | MR

[14] Mamaev S. G., Mostepanenko V. M., YaF, 37:5 (1983), 1323–1329

[15] Grib A. A., Nesteruk A. V., Shelyuto V. A., Problemy teorii gravitatsii i elementarnykh chastits, no. 13, Energoizdat, M., 1982 | MR

[16] Veryaskin A. V., Lapchinskii V. G., Rubakov V. A., Preprint IYaI P-0198, IYaI AN SSSR, M., 1981

[17] Mostepanenko V. M., TMF, 45:2 (1980), 210–223 | MR

[18] Mamaev S. G., Trunov N. N., YaF, 30:5 (1979), 1301–1311

[19] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971 | MR

[20] Mamaev S. G., TMF, 42:3 (1980), 350–361