Method of dimensional regularization for scalar and vector fields in homogeneous isotropic spaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 1, pp. 64-77
Voir la notice de l'article provenant de la source Math-Net.Ru
A consistent analytic continuation of the relations of the theory of quantized scalar
(with arbitrary coupling) and vector fields in isotropic metrics into the complex
plane with respect to the number of space-time dimensions is constructed.
Dimensionally regularized values are obtained for the quantities subtracted from
the vacuum energy-momentum tensor when the divergences are eliminated, and
their geometrical structure is established. All the infinite subtractions are
interpreted in terms of renormalizations.
@article{TMF_1985_63_1_a4,
author = {S. G. Mamaev and V. M. Mostepanenko and V. A. Sheluto},
title = {Method of dimensional regularization for scalar and vector fields in homogeneous isotropic spaces},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {64--77},
publisher = {mathdoc},
volume = {63},
number = {1},
year = {1985},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1985_63_1_a4/}
}
TY - JOUR AU - S. G. Mamaev AU - V. M. Mostepanenko AU - V. A. Sheluto TI - Method of dimensional regularization for scalar and vector fields in homogeneous isotropic spaces JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1985 SP - 64 EP - 77 VL - 63 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1985_63_1_a4/ LA - ru ID - TMF_1985_63_1_a4 ER -
%0 Journal Article %A S. G. Mamaev %A V. M. Mostepanenko %A V. A. Sheluto %T Method of dimensional regularization for scalar and vector fields in homogeneous isotropic spaces %J Teoretičeskaâ i matematičeskaâ fizika %D 1985 %P 64-77 %V 63 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1985_63_1_a4/ %G ru %F TMF_1985_63_1_a4
S. G. Mamaev; V. M. Mostepanenko; V. A. Sheluto. Method of dimensional regularization for scalar and vector fields in homogeneous isotropic spaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 1, pp. 64-77. http://geodesic.mathdoc.fr/item/TMF_1985_63_1_a4/