Symmetries and soliton solutions of nonlinear equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 1, pp. 50-63
Voir la notice de l'article provenant de la source Math-Net.Ru
A new, purely algebraic method is developed for finding soliton solutions of nonlinear
equations; it does not require the use of the formalism of the inverse scattering method.
As examples, explicit expressions for soliton solutions are constructed for some wellknown
equations as well as some not hitherto discussed in the literature. The symmetry
basis of the method is associated with infinite-dimensional Lie algebras, these being
internal symmetry algebras of the systems considered.
@article{TMF_1985_63_1_a3,
author = {A. N. Leznov and V. I. Man'ko and S. M. Chumakov},
title = {Symmetries and soliton solutions of nonlinear equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {50--63},
publisher = {mathdoc},
volume = {63},
number = {1},
year = {1985},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1985_63_1_a3/}
}
TY - JOUR AU - A. N. Leznov AU - V. I. Man'ko AU - S. M. Chumakov TI - Symmetries and soliton solutions of nonlinear equations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1985 SP - 50 EP - 63 VL - 63 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1985_63_1_a3/ LA - ru ID - TMF_1985_63_1_a3 ER -
A. N. Leznov; V. I. Man'ko; S. M. Chumakov. Symmetries and soliton solutions of nonlinear equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 1, pp. 50-63. http://geodesic.mathdoc.fr/item/TMF_1985_63_1_a3/