Symmetries and soliton solutions of nonlinear equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 1, pp. 50-63

Voir la notice de l'article provenant de la source Math-Net.Ru

A new, purely algebraic method is developed for finding soliton solutions of nonlinear equations; it does not require the use of the formalism of the inverse scattering method. As examples, explicit expressions for soliton solutions are constructed for some wellknown equations as well as some not hitherto discussed in the literature. The symmetry basis of the method is associated with infinite-dimensional Lie algebras, these being internal symmetry algebras of the systems considered.
@article{TMF_1985_63_1_a3,
     author = {A. N. Leznov and V. I. Man'ko and S. M. Chumakov},
     title = {Symmetries and soliton solutions of nonlinear equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {50--63},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_63_1_a3/}
}
TY  - JOUR
AU  - A. N. Leznov
AU  - V. I. Man'ko
AU  - S. M. Chumakov
TI  - Symmetries and soliton solutions of nonlinear equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 50
EP  - 63
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_63_1_a3/
LA  - ru
ID  - TMF_1985_63_1_a3
ER  - 
%0 Journal Article
%A A. N. Leznov
%A V. I. Man'ko
%A S. M. Chumakov
%T Symmetries and soliton solutions of nonlinear equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 50-63
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1985_63_1_a3/
%G ru
%F TMF_1985_63_1_a3
A. N. Leznov; V. I. Man'ko; S. M. Chumakov. Symmetries and soliton solutions of nonlinear equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 1, pp. 50-63. http://geodesic.mathdoc.fr/item/TMF_1985_63_1_a3/