Equations of the quantum inverse scattering method in the semiclassical limit
Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 1, pp. 32-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The transition to the semiclassicat limit in Marchenko's method for the inverse scattering problem for fixed angular momentum in the $s$-wave case is investigated. It is shown that the kernel $K(r, r')$ of the transformation operator is determined by the classically forbidden region and is exponentially large. Therefore, the linear integral equation for $K(r, r')$ cannot be reduced to a relationship between semiclassical physical quantities. Instead, one uses the equivalent nonlinear equation for the kernel $L(r, r')$ of the inverse operator of the transformation, continued with respect to the first argument to the complete axis. Under semiclassical conditions, the kernel $L(r, r')$ is a rapidly oscillating function having a simple physical meaning, and the nonlinear equation for $L(r, r')$ goes over into the well-known semiclassical relation between the phase shift and the potential. As an example, $s$-wave scattering by an exponential potential is considered.
@article{TMF_1985_63_1_a2,
     author = {D. I. Abramov},
     title = {Equations of the quantum inverse scattering method in the semiclassical limit},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {32--49},
     year = {1985},
     volume = {63},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_63_1_a2/}
}
TY  - JOUR
AU  - D. I. Abramov
TI  - Equations of the quantum inverse scattering method in the semiclassical limit
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 32
EP  - 49
VL  - 63
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_63_1_a2/
LA  - ru
ID  - TMF_1985_63_1_a2
ER  - 
%0 Journal Article
%A D. I. Abramov
%T Equations of the quantum inverse scattering method in the semiclassical limit
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 32-49
%V 63
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1985_63_1_a2/
%G ru
%F TMF_1985_63_1_a2
D. I. Abramov. Equations of the quantum inverse scattering method in the semiclassical limit. Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 1, pp. 32-49. http://geodesic.mathdoc.fr/item/TMF_1985_63_1_a2/

[1] Faddeev L. D., UMN, 14:4 (1959), 57–119 | MR

[2] Shadan K., Sabate P., Obratnye zadachi v kvantovoi teorii rasseyaniya, Mir, M., 1980 | MR

[3] Zakharev B. N., Pivovarchik V. N., Plekhanov E. B., Suzko A. A., EChAYa, 13:6 (1982), 1284–1335 | MR

[4] Lipperheide R., Fiedeldey H., Z. Phys., A286 (1978), 45–56 | DOI

[5] Marchenko V. A., Operatory Shturma-Liuvilya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR

[6] Landau L. D., Lifshits E. M., Kvantovaya mekhanika, Nauka, M., 1974 | MR

[7] Fedoryuk M. V., Metod perevala, Nauka, M., 1977 | MR

[8] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, T. 1, 2, Nauka, M., 1974 | MR

[9] Abramov D. I., TMF, 58:2 (1984), 244–253 | MR

[10] Baz A. I., Zeldovich Ya. B., Perelomov A. M., Rasseyanie, reaktsii i raspady v nerelyativistskoi kvantovoi mekhanike, Nauka, M., 1971 | Zbl

[11] Blazek M., Commun. Math. Phys., 5 (1966), 282–291 | DOI | MR