Block-Toeplitz matrices and associated properties of a Gaussian model on a half-axis
Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 1, pp. 154-160 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A Gaussian model on a half-axis with interaction given by a block-Toeplitz matrix $\{s_{j-k}\}^\infty_{j,k=0}$. is studied. A procedure is indicated for calculating the correlation functions and the free energy in the absence of an external field and for several ways of including such a field. The results are formulated in terms of a matrix measure $\sigma$, whose Fourier coefficients are $s_j$. These results are based on the asymptotic behavior found in the paper for the individual blocks of the matrix $(\{s_{j-k}\}^n_{j,k=0})^{-1}$ and their sums in the limit $n\to\infty$.
@article{TMF_1985_63_1_a10,
     author = {A. L. Sakhnovich and I. M. Spitkovsky},
     title = {Block-Toeplitz matrices and associated properties of {a~Gaussian} model on a~half-axis},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {154--160},
     year = {1985},
     volume = {63},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1985_63_1_a10/}
}
TY  - JOUR
AU  - A. L. Sakhnovich
AU  - I. M. Spitkovsky
TI  - Block-Toeplitz matrices and associated properties of a Gaussian model on a half-axis
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1985
SP  - 154
EP  - 160
VL  - 63
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1985_63_1_a10/
LA  - ru
ID  - TMF_1985_63_1_a10
ER  - 
%0 Journal Article
%A A. L. Sakhnovich
%A I. M. Spitkovsky
%T Block-Toeplitz matrices and associated properties of a Gaussian model on a half-axis
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1985
%P 154-160
%V 63
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1985_63_1_a10/
%G ru
%F TMF_1985_63_1_a10
A. L. Sakhnovich; I. M. Spitkovsky. Block-Toeplitz matrices and associated properties of a Gaussian model on a half-axis. Teoretičeskaâ i matematičeskaâ fizika, Tome 63 (1985) no. 1, pp. 154-160. http://geodesic.mathdoc.fr/item/TMF_1985_63_1_a10/

[1] Vladimirov V. S., Volovich I. V., TMF, 54:1 (1983), 8–22 | MR

[2] Vladimirov V. S., Volovich I. V., DAN SSSR, 266:4 (1982), 788–791 | MR

[3] Vladimirov V. S., Volovich I. V., Lect. Notes in Math., 1043, 1984, 289–292 | MR

[4] Krein M. G., Spitkovskii I. M., Anal. Math., 9:1 (1983), 23–41 | DOI | MR | Zbl

[5] Sekefalvi-Nad B., Foyash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970, 431 pp. | MR

[6] Vekua N. P., Sistemy singulyarnykh integralnykh uravnenii, Nauka, M., 1970, 379 pp. | MR | Zbl

[7] Wiener N., Masani P., Acta Math., 99 (1958), 93–137 | DOI | MR

[8] Grenander U., Sege G., Teplitsevy formy i ikh prilozheniya, IL, M., 1961, 308 pp. | MR

[9] Krein M. G., Spitkovskii I. M., DAN SSSR, 234:2 (1977), 287–290 | MR | Zbl

[10] Krein M. G., Spitkovskii I. M., Matem. issled. (Kishinev), 47 (1978), 41–63 | MR | Zbl

[11] Gokhberg I. Ts., Khainig G., Rev. Roum. Math. Pure Appliq., 9:5 (1974), 623–663

[12] Krein M. G., Spitkovskii I. M., Lect. Notes in Math., 1043, 1984, 285–288

[13] Potapov V. P., Tezisy dokladov Vsesoyuznoi konferentsii po teorii funktsii kompleksnogo peremennogo, KhGU, Kharkov, 1971, 179–181 | MR

[14] Kovalishina I. V., DAN ArmSSR, 1974, no. 3, 211–214

[15] Sakhnovich A. L., Funktsionalnyi analiz (Ulyanovsk), 1980, no. 14, 116–127 | MR | Zbl