Group structure of hidden symmetry transformations for supersymmetric nonlinear sigma models
Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 3, pp. 400-408
Voir la notice de l'article provenant de la source Math-Net.Ru
The hidden symmetry transformations that generate via Noether's theorem conserved
currents for two-dimensional supersymmetric nonlinear sigma models are considered.
The group structure of these transformations is investigated, and it is shown that the
generators with positive and with negative index (each separately) form infinite closed
Lie algebras isomorphic to the algebra $\widetilde{\mathscr G}\otimes F(t)$ where $\widetilde{\mathscr G}$ is the Lie algebra of the subgroup $\widetilde G$, that leaves the
initial data invariant and $F(t)$ is the class of rational functions. For the principal chiral superficial, it is shown that the maximal closed Lie algebra of the hidden symmetry transformations is isomorphic to the algebra $\mathscr G\otimes P(t,1/t)\oplus\mathscr G$, where $P(t, 1/t)$ are Laurent polynomials.
@article{TMF_1985_62_3_a7,
author = {R. P. Zaikov},
title = {Group structure of hidden symmetry transformations for supersymmetric nonlinear sigma models},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {400--408},
publisher = {mathdoc},
volume = {62},
number = {3},
year = {1985},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1985_62_3_a7/}
}
TY - JOUR AU - R. P. Zaikov TI - Group structure of hidden symmetry transformations for supersymmetric nonlinear sigma models JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1985 SP - 400 EP - 408 VL - 62 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1985_62_3_a7/ LA - ru ID - TMF_1985_62_3_a7 ER -
R. P. Zaikov. Group structure of hidden symmetry transformations for supersymmetric nonlinear sigma models. Teoretičeskaâ i matematičeskaâ fizika, Tome 62 (1985) no. 3, pp. 400-408. http://geodesic.mathdoc.fr/item/TMF_1985_62_3_a7/